Computer Networks: Domain Name System
Domain Name System

- The **domain name system** (DNS) is an application-layer protocol.
- **Basic function of DNS**
 - Map domain names to IP addresses
 - The mapping is many to many
- **Examples:**
 - `www.cs.brown.edu` and `cs.brown.edu` map to `128.148.32.12`
 - `google.com` maps to `198.7.237.251`, `198.7.237.249`, and other addresses

- More generally, DNS is a distributed database that stores **resource records**
 - **Address (A) record:** IP address associated with a host name
 - **Mail exchange (MX) record:** mail server of a domain
 - **Name server (NS) record:** authoritative server for a domain

02/22/10 Networks: DNS
Domains

- **Domain name**
 - Two or more labels, separated by dots (e.g., `cs.brown.edu`)

- **Top-level domain (TLD)**
 - Generic (gTLD), e.g., `.com`, `.org`, `.net`
 - Country-code (ccTLD), e.g., `.ca`, `.it`

- **ICANN**
 - Internet Corporation for Assigned Names and Numbers
 - Nonprofit

- **ICANN**
 - Keeps database of registered gTLDs (InterNIC)
 - Accredits registrars for gTLDs

- **gTLDs**
 - Managed by ICANN

- **ccTLDs**
 - Managed by government organizations
DNS Tree

- com
 - google.com
 - microsoft.com
 - stanford.edu

- edu
 - brown.edu
 - cs.brown.edu
 - math.brown.edu

resource records

Networks: DNS
Name Servers

- **Name server**
 - Keeps local database of DNS records
 - Answers DNS queries
 - Can ask other name servers if record not in local database

- **Authoritative name server**
 - Stores reference version of DNS records for a zone (partial tree)

- **Examples**
 - `dns.cs.brown.edu` is authoritative for `cs.brown.edu`
 - `bru-ns2.brown.edu` is authoritative for `brown.edu`, except `cs.brown.edu`

- **Root servers**
 - Authoritative for the root zone (TLDs)
 - `[a-m].root-servers.net`
 - Supervised by ICANN
Name Resolution

• Resolver
 • Program that retrieves DNS records
 • E.g., dig in Linux and nslookup in Windows
 • Caches records received
 • Connects to a name server (default, root, or given)

• Iterative resolution
 • Name server refers client to authoritative server (e.g., a TLD server) via an NS record
 • Repeat

• Recursive resolution
 • Name server queries another server and forwards the final answer (e.g., A record) to client
Iterative Name Resolution

Local Machine

Application

Resolver

local name server

Resolver

(root)

Resolver

f.root-servers.net

com

Resolver

d.gtld-servers.net

google.com

Resolver

ns2.google.com

www.google.com A 74.125.226.116

query

www.google.com

(root) NS f.root-servers.net

com NS d.gtld-servers.net

google.com NS ns2.google.com
Recursive Name Resolution

- Application
- Resolver
- google.com server
 - query
 - answer: A 74.125.226.176

- local name server
 - Resolver
 - query
 - answer: A 74.125.226.176

- other name server
 - Resolver
 - ...
Glue Records

• Circular references
 • The authoritative name server for a domain may be within the same domain
 • E.g., dns.cs.brown.edu is authoritative for cs.brown.edu

• Glue record
 • Record of type A (IP address) for a name server referred to NS record
 • Essential to break circular references

• Example
 • brown.edu. NS bru-ns1.brown.edu.
 • bru-ns1.brown.edu. A 128.148.248.11 [glue record]
DNS Caching

• There would be too much network traffic if a path in the DNS tree would be traversed for each query
 – Root servers and TLD servers would be rapidly overloaded
• DNS servers **cache** records that are results of queries for a specified amount of time
 – Time-to-live field
• DNS queries with caching
 – First, resolver looks in cache for A record of query domain
 – Next, resolver looks in cache for NS record of longest suffix of query domain
Iterative Name Resolution with Caching

- Query: `www.google.com`
- Local Machine
 - Application
 - Resolver
 - DNS Cache
 - com NS d.gtld-servers.net
 - ... (other records)

- local name server
 - Resolver

- (root)
 - Resolver
 - f.root-servers.net

- Resolver
 - com
 - Resolver
 - d.gtld-servers.net

- Resolver
 - google.com
 - Resolver
 - ns2.google.com

- google.com NS ns2.google.com

- www.google.com A 74.125.226.116

Networks: DNS
Recursive Name Resolution with Caching

- **local machine**
 - Application
 - Resolver

- **local name server**
 - Resolver
 - DNS Cache
 - google.com A 74.125.226.176
 - google.com A 74.125.226.176
 - ...

- **other name server**
 - Resolver

- Application sends a query to the local resolver.
- The resolver looks in the DNS cache for the answer to google.com.
- If found, the answer (A 74.125.226.176) is returned.
- Otherwise, the resolver queries the local name server, and if the answer is cached, it is returned.
- If not cached, it is queried from another name server and cached for future use.
Local DNS Cache

• Operating system maintains DNS cache
 – Shared among all running applications
 – Can be displayed all users
 – View DNS cache in Windows with command `ipconfig /displaydns`
 – Clear DNS cache in Windows with command `ipconfig /flushdns`

• Privacy issues
 • Browsing by other users can be monitored
 • Note that private/incognito browsing does not clear DNS cache
DNS Cache Poisoning

• Basic idea
 • Give a DNS server a false address record and get it cached

• DNS query mechanism
 • Queries issued over UDP on port 53
 • 16-bit request identifier in payload to match answers with queries
 • No authentication

• Cache may be poisoned when a resolver
 • Disregards identifiers
 • Has predictable identifiers and return ports
 • Accepts unsolicited DNS records

• Early versions of BIND (popular DNS software) vulnerable to cache poisoning
DNS Cache Poisoning Defenses

- Query randomization
 - Random request identifier (16 bits)
 - Random return port (16 bits)
- Probability of guessing request ID or return port
 \[\frac{1}{2^{16}} = 0.0015\% \]
- Probability of guessing request ID and return port is
 \[\frac{1}{2^{32}} \text{ (less than one in four billion)} \]

- Check request identifier
- Use signed records
 - DNSSEC
Kaminsky’s Attack

- Attacker causes victim to send
 - Many DNS requests for nonexistent subdomains of target domain
- Attacker sends victim
 - Forged NS responses for the requests
- Format of forged response
 - Random ID
 - Correct NS record
 - Spoofed glue record pointing to the attacker’s name server IP

02/22/10

Networks: DNS
DNSSEC

- **Goals**
 - Authenticity of DNS answer origin
 - Integrity of reply
 - Authenticity of denial of existence

- **Implementation**
 - Signed DNS replies at each step
 - Public-key cryptography
 - Certificates in the OS

- **Slow deployment**
 - Root servers support since 2010

02/22/10 Networks: DNS
References

- **RFC 1034** (Domain Names – Concepts and Facilities)
- **CSCI 1680 slides on DNS**
- **Dan Kaminsky's 2008 Black Hat talk**