Computer Networks: Domain Name System
Domain Name System

- The **domain name system** (DNS) is an application-layer protocol
- Basic function of DNS
 - Map domain names to IP addresses
 - The mapping is many to many
- Examples:
 - `www.cs.brown.edu` and `cs.brown.edu` map to `128.148.32.110`
 - `google.com` maps to `198.7.237.251`, `198.7.237.249`, and other addresses
- More generally, DNS is a distributed database that stores **resource records**
 - **Address (A)** record: IP address associated with a host name
 - **Mail exchange (MX)** record: mail server of a domain
 - **Name server (NS)** record: authoritative server for a domain
Domains

- Domain name
 - Two or more labels, separated by dots (e.g., `cs.brown.edu`)
- Top-level domain (TLD)
 - Generic (gTLD), e.g., `.com`, `.org`, `.net`
 - Country-code (ccTLD), e.g., `.ca`, `.it`
- ICANN
 - Internet Corporation for Assigned Names and Numbers
 - Nonprofit
- ICANN
 - Keeps database of registered gTLDs (InterNIC)
 - Accredits registrars for gTLDs
- gTLDs
 - Managed by ICANN
- ccTLDs
 - Managed by government organizations
DNS Tree

- google.com
- microsoft.com
- stanford.edu
- brown.edu
- cs.brown.edu
- math.brown.edu

Resource records
Name Servers

- **Name server**
 - Keeps local database of DNS records
 - Answers DNS queries
 - Can ask other name servers if record not in local database

- **Authoritative name server**
 - Stores reference version of DNS records for a zone (partial tree)

- **Examples**
 - `dns.cs.brown.edu` is authoritative for `cs.brown.edu`
 - `bru-ns2.brown.edu` is authoritative for `brown.edu`, except `cs.brown.edu`

- **Root servers**
 - Authoritative for the root zone (TLDs)
 - `[a-m].root-servers.net`
 - Supervised by ICANN
Name Resolution

• Resolver
 • Program that retrieves DNS records
 • E.g., `dig` in Linux and `nslookup` in Windows
 • Caches records received
 • Connects to a name server (default, root, or given)

• Iterative resolution
 • Name server refers client to authoritative server (e.g., a TLD server) via an NS record
 • Repeat

• Recursive resolution
 • Name server queries another server and forwards the final answer (e.g., A record) to client
Iterative Name Resolution

Local Machine

Application

Resolver

Query

www.google.com

Local name server

Resolver

(root)

Resolver

f.root-servers.net

com

Resolver

d.gtld-servers.net

google.com

Resolver

ns2.google.com

www.google.com

A
74.125.226.116

Networks: DNS
Recursive Name Resolution

- **local machine**
 - Application
 - Resolver

- **resolver**
 - google.com query
 - answer
 - A 74.125.226.176

- **google.com server**
 - Resolver
 - google.com query
 - answer
 - A 74.125.226.176

- **other name server**
 - Resolver
 - ...
Glue Records

- Circular references
 - The authoritative name server for a domain may be within the same domain
 - E.g., `dns.cs.brown.edu` is authoritative for `cs.brown.edu`

- Glue record
 - Record of type A (IP address) for a name server referred to NS record
 - Essential to break circular references

- Example
 - `brown.edu. NS bru-ns1.brown.edu.`
 - `bru-ns1.brown.edu. A 128.148.248.11 [glue record]`
DNS Caching

• There would be too much network traffic if a path in the DNS tree would be traversed for each query
 – Root servers and TLD servers would be rapidly overloaded
• DNS servers cache records that are results of queries for a specified amount of time
 – Time-to-live field
• DNS queries with caching
 – First, resolver looks in cache for A record of query domain
 – Next, resolver looks in cache for NS record of longest suffix of query domain
Iterative Name Resolution with Caching

Query: www.google.com

Local Machine

Application

Resolver

DNS Cache

com NS d.gtld-servers.net...

google.com NS ns2.google.com

Resolver

d.gtld-servers.net

Resolver

f.root-servers.net

Resolver

www.google.com

Resolver

ns2.google.com

www.google.com A 74.125.226.116

Networks: DNS
Recursive Name Resolution with Caching

Local machine
- Application
- Resolver

Resolver
- google.com query
- A 74.125.226.176

Local name server
- DNS Cache
 - google.com A 74.125.226.176
 - ...

Other name server
- Resolver
Local DNS Cache

• Operating system maintains DNS cache
 – Shared among all running applications
 – Can be displayed all users
 – View DNS cache in Windows with command `ipconfig /displaydns`
 – Clear DNS cache in Windows with command `ipconfig /flushdns`

• Privacy issues
 • Browsing by other users can be monitored
 • Note that private/incognito browsing does not clear DNS cache
DNS Cache Poisoning

• Basic idea
 • Give a DNS server a false address record and get it cached

• DNS query mechanism
 • Queries issued over UDP on port 53
 • 16-bit request identifier in payload to match answers with queries
 • No authentication

• Cache may be poisoned when a resolver
 • Disregards identifiers
 • Has predictable identifiers and return ports
 • Accepts unsolicited DNS records

• Early versions of BIND (popular DNS software) vulnerable to cache poisoning
DNS Cache Poisoning Defenses

- Query randomization
 - Random request identifier (16 bits)
 - Random return port (16 bits)
- Probability of guessing request ID or return port
 \[1 / 2^{16} = 0.0015\% \]
- Probability of guessing request ID and return port is
 \[1 / 2^{32} \text{ (less than one in four billion)} \]

- Check request identifier
- Use signed records
 - DNSSEC
Kaminsky’s Attack

- Attacker causes victim to send
 - Many DNS requests for nonexistent subdomains of target domain
- Attacker sends victim
 - Forged NS responses for the requests
- Format of forged response
 - Random ID
 - Correct NS record
 - Spoofed glue record pointing to the attacker’s name server IP
DNSSEC

• Goals
 • Authenticity of DNS answer origin
 • Integrity of reply
 • Authenticity of denial of existence

• Implementation
 • Signed DNS replies at each step
 • Public-key cryptography
 • Certificates in the OS

• Slow deployment
 • Root servers support since 2010

Networks: DNS
References

- **RFC 1034** (Domain Names – Concepts and Facilities)
- **CSCI 1680 slides on DNS**
- **Dan Kaminsky's 2008 Black Hat talk**