CS 157 Design and Analysis of Algorithms Valiant

Homework 4: Codr

Due: Oct. 9, 2018 at 6:00 PM (carly)
Oct. 12, 2018 at 6:00 PM (on time)
Oct. 14, 2018 at 6:00 PM (late)

This is a partner homework as usual: work on all problems together; come to all office hours
together; you are responsible for everything you and your partner submit and it is an academic
code violation to submit something that is not yours. Check for your partner in the Google doc
that was sent out. If you don’t have a partner, please let us know.

One of the features of good writing style is to say everything once and no more than once. When
you are writing up these problems, please find a way to organize your presentation so that similar
repeated parts of your argument are instead compressed into a single unit. This will make it easier
for you to write and for us to read, and will sound more professional.

We are pivoting to a new business model. Meet Codr: It’s Omegle for Pair Programming.
In this assignment you will help us match programmers with other programmers so that our
customers can find new pair programming buddies.

1-credit track: do problems 1, 2, 3 and indicate “l1-credit” on each problem.

Problem 1

We represent each Codr user internally by hashing them to a small ID number, and we hope
that each user will get hashed to a unique number so that we can distinguish our users.
If two Codr users hash to the same ID, we may accidentally assign them to work with the
wrong partners. Oops! Help us analyze hash functions so as to minimize collisions.

1. When choosing a hash function, we want to make sure that collisions are unlikely. One way
to ensure this is to randomly choose a hash function from a large family, where different
functions in the hash function family scramble elements in different ways.

A hash function family H is a family of functions {h,} : X — Y, where p ranges over
parameters in a set P. Throughout this problem, we will let m be the size of the range of
the hash function family, m = |Y|. Typically, a hash function is parameterized by several
parameters; for example, if h is parameterized by triples p = (p1, p2, p3), where p; ranges over
some set P), po ranges over some set P», and p3 ranges over some set Ps, then the universe
of parameters P consists of all values of these triples. Specifically, P = P; x P» x Ps3, and
|P| = [Pyr| - |Pof - [Ps.

A hash function family H is called universal if for each pair a,b € X with a # b, at most %
out of the |P| parameters p make a and b collide as hy(a) = hy(b).

For each of the following hash function families, either prove it is universal or give a coun-
terexample. Additionally, compute how many bits are needed to choose a random element of
the family (namely, compute log, | P| in each case).

The notation [m] denotes the set of integers {0,1,2,...,m — 1}.

CS 157

(a)

(c)
(d)

Homework 4: Codr Oct. 12, 2018 at 6:00 pm

(3 points) H = {hy, : p € [m]} where m is a fixed prime and
hp(z) = pr mod m.

Each of these functions is parameterized by an integer p in P = [m], and maps an integer
z in X = [m] to an output in Y = [m].

(3 points) H = {hy, p, : p1,p2 € [m]} where m is a fixed prime and
hpy o (21, 22) = (p121 + p2x2) mod m.

Each of these functions is parameterized by a pair of integers p; and py in [m], and maps
a pair of integers z1 and x2 in [m] to an output in [m] (P = [m] x [m], X = [m] x [m],
Y = [m]).

(3 points) H is as in part 1b except m is now a fixed power of 2 (instead of a prime).

(3 points) H is the set of all functions (there are a lot!) from pairs (x1,x2) € [m] x [m)]
to [m].

2. (3 points) Hacking a hash function: suppose for a member of the hash function family from
part 1b you have found two inputs (z1,z2) and (2, }) that hash to the same value. Describe
explicitly how to find a third input that collides with both of these inputs.

(Suppose you are interacting with a server, and you start to suspect that the server is using
a hash function like this. This sort of technique might be used to crash the server, if their
hash function data structures are not implemented well. Your method above should also let
you find a fourth, fifth, etc. inputs that collide, until the server has problems.)

Problem 2

It turns out that people love collaborating on problems—our userbase has grown so much
that we need to transfer our data to another system! We have to place people in a really
large array. Can you help us initialize this array quickly?

(20 points) You can allocate a block of n memory locations on your computer in constant time,
however the contents of the memory in the block may be arbitrary. Typically, you will initialize
these memory locations before you use them, by setting them all to a special symbol such as 0 or
Empty, which takes O(n) time.

The goal of this problem is to create a new data structure that mimics the properties of an array,
while being much faster to initialize, but while still ensuring that any values returned by this data
structure are meaningful, and not uninitialized garbage.

You need to come up with a data structure that behaves like a 0-indexed array A of n elements.
The following operations must take a constant time:

e INITIALIZE(n): Initialize the data structure so that it will mimic an array of size n.

e SET(index,value): Assign the value to Alindex].

e GET(indez): Return the value from Alindez]. If no value has yet been assigned, return Empty.

CS 157 Homework 4: Codr Oct. 12, 2018 at 6:00 pm

Warning: Keep in mind that, initially, the entries in memory can be arbitrary and may imitate
valid parts of whatever data structure you design — your data structure should work no matter what
is in memory initially.

Notes:

e Use more than n storage, but do not use more than O(n) storage.

e Most memory locations may be garbage, but think about how you can be sure some memory
locations are meaningful.

e Because all operations in this data structure must take worst-case constant time, you cannot
use anything fancy: no hash tables, no binary search trees, no heaps, etc.

Important: If you are using extra space, please explain in sentences how it is used. As always,
you need to communicate clearly that your proposed data structure works correctly, and that the
running time for each operation, including initialization, is constant.

Problem 3

In this problem, you will investigate self-balancing binary search trees and how to augment them
to be even more useful. Recall binary search trees: http://en.wikipedia.org/wiki/Binary_
search_tree. One of the potential pitfalls of binary search trees is that they can become unbalanced,
meaning that some nodes are much farther from the root than others. In particular, if we are storing
n items, we would like all elements to have distance at most some small multiple of logn from the
root. There are two standard notions of self-balancing binary search trees, which each guarantee
that no matter how the elements are inserted or deleted, when there are n elements in the tree all
elements will have distance at most some small multiple of logn from the root:

AVL trees (http://en.wikipedia.org/wiki/AVL_tree) very aggressively rebalance the tree;

Red-black trees (http://en.wikipedia.org/wiki/Red-black_tree) take a slightly more re-
laxed approach.

In each case, rebalancing occurs via a sequence of tree rotations (http://en.wikipedia.org/wiki/
Tree_rotation).

Skim the descriptions of red-black trees and AVL trees on Wikipedia, as you will be using them
in the parts below; however, the internal details of how these trees work do not matter from our
algorithm design perspective.

1. (2 points) From the Wikipedia articles (do not prove or justify this, just find it in the articles):
How many rotations do red-black trees require for an insertion or deletion? How many
rotations do AVL trees require for an insertion or deletion?

2. (4 points) For an arbitrary red-black tree, prove that the longest path from the root to a
leaf contains at most twice as many nodes as the shortest path from the root to a leaf.
(Hint: use properties 4 and 5 of red-black trees, as listed in http://en.wikipedia.org/
wiki/Red-black_tree#Properties.)

http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/Red-black_tree
http://en.wikipedia.org/wiki/Tree_rotation
http://en.wikipedia.org/wiki/Tree_rotation
http://en.wikipedia.org/wiki/Red-black_tree#Properties
http://en.wikipedia.org/wiki/Red-black_tree#Properties

CS 157 Homework 4: Codr Oct. 12, 2018 at 6:00 pm

In the next two parts your challenge is to figure out how to augment such a self-balancing tree so
that it stores additional information that will help you solve certain algorithmic challenges. This
additional information must be easy to maintain: each of the operations on your data structure
must take O(logn) time. While the internal details of red-black trees and AVL trees are very
complicated, and rather different, for the purpose of building effective algorithms you may view
them as being essentially the same: to insert or delete an item in these data structures, first an
ordinary binary tree search is performed, and then at most one leaf is added or removed or a node
with only one child is removed, and the value of at most one internal node is edited (which happens
when a node is “swapped” during the ordinary process of node deletion). Then a complicated series
of rotations is performed to rebalance the tree, but the number of such rotations is bounded by
the expression you found in part 1. In addition, O(logn) work may be done to update internals of
the red-black tree or AVL tree data structure, but these internals do not affect the values or the
structure of the tree.

In summary:

e The n items are stored as a binary search tree where each leaf has depth at most O(logn).

e Insertion and deletion in this data structure involve at most a constant number of the
more fundamental operations: ADD-LEAF, REMOVE-NODE-WITH-AT-MOST-ONE-CHILD,
and EDIT-INTERNAL-NODE-VALUE. (For context for each of these operations, see how they
are needed when we delete an element from a binary search tree: https://en.wikipedia.
org/wiki/Binary_search_tree#Deletion.)

e In addition, insertion and deletion may involve some number of calls to ROTATE, as you found
in part 1.

In this problem there are two separate tasks that you must augment these data structures to handle.
(Chapter 14.2 of the CLRS textbook has an introduction to this idea.)

3. (12 points) At Codr, business is booming. The only problem is that often someone who likes
functional programming styles will pair with someone who doesn’t, and they will spend all
their time rewriting for loops as map invocations and vice versa. To solve this, we want to
try an alternative pairing strategy that pairs people together who are most similar in how
much they like functional programming. Every user tells Codr how much they like functional
programming on a scale from 1 to 10, and your job is to find users who are closest together.
For the proof of concept, however, you are just going to find the minimum distance between
users (the algorithm for this is similar to the algorithm for finding the two closest users).

Consider a self-balancing binary search tree whose nodes contain numbers. Augment this
data structure so that your data structure can now also respond in constant time to
FIND-MINIMUM-DIFFERENCE(T'), which must return the difference between the closest pair
of numbers currently stored in the tree T'. For example, if the tree stores the numbers
1,4.7,5.3,6,7, then the closest pair of numbers would be 4.7 and 5.3, with a difference of 0.6,
and your algorithm should return 0.6.

You must state what additional data you are storing, as well as how to update this information
when performing each of the four fundamental operations ADD-LEAF, REMOVE-NODE-WITH-
AT-MoST-ONE-CHILD, EDIT-INTERNAL-NODE-VALUE, and ROTATE. Given these four sub-
routines, and the basic facts above, conclude that the total time spent by your algorithm for

https://en.wikipedia.org/wiki/Binary_search_tree#Deletion
https://en.wikipedia.org/wiki/Binary_search_tree#Deletion

CS 157 Homework 4: Codr Oct. 12, 2018 at 6:00 pm

each insertion and deletion is O(logn). Additionally, make sure to analyze how long it takes
to compute the minimum difference between two elements given your data structure.

Hint: For every node, store the minimum difference between any two elements in its subtree;
the challenge is to figure out what else to store at each node so that you can update these
minimum differences efficiently.

4. Suppose there is an infinitely long, straight line, and people will sometimes step onto the line
or step off of it, at locations corresponding to numbers. People standing on the line will always
be facing in the positive direction. Unfortunately, some of these people hold gravity-defying
throwing knives that kill the next person on the line.

In particular, you are going to observe a series of events, each of which will have one the
following formats:

[E1] A person outside the line moves into unoccupied position p on the line.

[E2] A person standing at position p exits the line.

[Q] A person standing at position p throws a knife in the positive direction.

Your objective is to efficiently compute what will happen (so you can warn a would-be victim
before they get hit by the knife); if no one will get hit by a knife, report this.

(a) (4 points) Describe how to use a (self-balancing) binary search tree to respond to the
series of events as described above. Each event should be responded to in O(logn)
run—time, where n is the total number of people.

The problem, however, gets more complex than this: in reality, each knife is thrown at a
different height, and only someone whose whose height is strictly greater than the knife’s
height will get hit. As above, each event will have one of the following formats:

[E1] A person with height i outside the line moves into unoccupied position p on the line.

[E2] A person standing at position p exits the line.

[Q] A person standing at position p throws a knife in the positive direction at an arbitrary
height 7.

(b) (8 points) Augment a self-balancing binary search tree and describe (same rules as above)
how to use it to respond to the series of events in this more complicated game. Each event
should be responded to in O(log n) run—time, where n is the total number of people.

Hint: At each node, in addition to storing “a height of a person,” you should figure out what
additional information to store, so that you can respond to the events efficiently.

CS 157 Homework 4: Codr Oct. 12, 2018 at 6:00 pm

Problem 4

When Codr users get matched, they immediately start sending each other memes, and we
need to store all the currently used memes in our server’s memory (pronounced MEME-
ory). Because the set of quality memes is constantly changing, we need a flexible memory
management system that can quickly allocate and free up different sized blocks of memory,
analogous to what is done in languages like C.

The ALLOCATE function takes size as a parameter, and returns the location of the start of a
contiguous chunk of unused memory of the requested size, that your code is now free to use.
When you are finished with a chunk, you call the FREE function on the location of the start of that
chunk, indicating that the memory may be reallocated for other purposes. For example, after calling
pl = ALLOCATE(1), p2 = ALLOCATE(5), p3 = ALLOCATE(2), the diagram of used memory might
look like the following (with numbers indicating which block of memory each location corresponds
to, if any):

This corresponds to pl = 8, p2 =9, and p3 = 3. After calling FREE(9), memory will look like this:

HEE IR NN

Thus if we try calling ALLOCATE(6) next it will fail, because there is no block of 6 adjacent empty
memory locations, despite the fact that there are 10 free memory locations total!

Consider the following high-level description of a scheme—in terms of a memory size N—to im-
plement ALLOCATE and FREE: for each k from 0 up to log, N, there is a separate region of N
memory, divided into chunks of size 2¥. Whenever ALLOCATE(size) is called, size is rounded up
to the nearest 2%, and then an empty chunk in the kth region of memory is returned, if one exists,
otherwise the algorithm fails.

1. (a) (1 point) What is the total memory required by this scheme? (Don’t count overhead
from data structures needed to actually implement such a scheme.)

(b) (3 points) What is the smallest amount of allocated memory that could make such a
scheme fail? (“What is the most embarrassing situation for this scheme?”) Specifically,
describe a sequence of ALLOCATE requests that is sure to make the algorithm fail, and
argue why you have found the sequence with least total memory used—by “used” we
mean both the currently allocated memory and the size of the block being requested
when the scheme fails. (You should not need to call FREE for this part.)

(c¢) (1 point) What is the “efficiency” of this scheme, the ratio between your answers to the
previous two parts? Explain this in a sentence.)

2. (5 points) Describe how to implement ALLOCATE and FREE as described above, in constant
time per call, using constant amount of memory overhead for each chunk. (You are also
allowed to use overhead for each of the unallocated chunks). If your solution leverages specific
data structures, be explicit about how they are used, and what properties of them you rely
on to successfully implement your procedures. Do not worry about time taken to initialize
your data structures, only the time used per call.

CS 157 Homework 4: Codr Oct. 12, 2018 at 6:00 pm

3. (3 points) In the next part we will try to show that the bounds you found in part 1 are
actually about as good as can be expected, even though this scheme appears wasteful. To
help give you some intuition before you start the next part: first think about how you would
design ALLOCATE and FREE, differently from the scheme above. This part has no specific
requirements, but the more you think about how else ALLOCATE and FREE might work, the
more you will gain from the next parts. Write down an alternate scheme here, along with
why you think it might be a good idea.

4. Now we get to the tricky part: showing that the scheme of parts 1 and 2 is close to optimal,
by showing that any other scheme can be made to perform as badly. In this part you will
construct and analyze some online adversaries for any allocation scheme. Recall that an
online adversary can adaptively respond to decisions made in the past. In this case, your
adversary will be able to see where different pieces of memory were allocated, and can design
future calls to ALLOCATE and FREE to take advantage of this. Let m be the total size of
memory.

(a) (3 points) Describe an algorithm that makes a series of calls to ALLOCATE and FREE
(no matter how they are implemented!) and which guarantees the following: either
some call to ALLOCATE(1) will fail when there is still unused memory, or a single call to
ALLOCATE(2) will fail when only half the memory is being used. (Note/hint: in this
part, you are allowed to entirely fill up the memory, and then selectively free parts of it.
Remember, your algorithm must work for all possible allocation schemes.)

(b) (1 point) In a sentence or two, describe how to adapt your answer to the previous part
so that either some call to ALLOCATE(1) will fail when there is still unused memory, or
a single call to ALLOCATE(y/m) will fail when only y/m memory is being used.

(¢) (18 points—8 points for algorithm, 10 for proof) What you found in the last two parts
is bad news for allocation algorithms, but still not that embarrassing: after all, if you
completely fill up memory, then one might expect allocation strategies to struggle with
putting things in appropriate places. Our challenge now is to run out of memory without
ever using more than a O(logm) fraction of it.

Your task is to 1) construct an (online) algorithm that makes a series of calls to
ALLOCATE and FREE (no matter how they are implemented!), where, given m mem-
ory, your scheme will cause the memory allocator to fail without ever having more than
O(lofg”m) memory requested; 2) prove the correctness of your online algorithm /adversary.
Note: you may find it intuitively useful to reparameterize the problem by thinking of
8 = cpga- for some constant ¢ that you choose later, and then saying that your algorithm
will never ask for more than s memory, but will cause a system with O(s-log s) memory to
crash. A bit of thought will confirm that logm and log s are essentially the same number
(if two numbers are close to each other, their logs will be very close to each other), so
it does not matter whether we are talking about logm factor memory overhead or log s

factor memory overhead.

Carefully read all the hints below: The general strategy for your algorithm should
be:

CS 157 Homework 4: Codr Oct. 12, 2018 at 6:00 pm

Call ALLOCATE(1) for § times, resulting in § allocated memory, consisting of § chunks
of size 1.
fori=1,2,3,...

i. Call ALLOCATE(2) for %% times, resulting in § new memory, consisting of £ - 5

A 21
chunks of size 2°;

ii. Carefully free up at least half of the allocated memory (allocated in this i iteration
or previous iterations) so as to leave memory maximally “fragmented”.

The hard part is figuring out how to free your memory in step 2 so that you can
prove your algorithm works. You need to design your algorithm with the following
proof strategy in mind[] At the end of the it" iteration (which is also the start of
the 7 + 15¢ iteration) consider drawing lines to divide memory into regionsg of size
2!, For i = 1 we consider regions ’1,2 ,‘3,4‘,‘5,6‘,..., 27 + 1,2j—|—2‘,... all of size

2, and for general 7, the regions are [1,2,3,...,2°| |20 +1,20 42,20 +3,...,2-2¢| ...,
G2l 1,5-2042,5-20 43, (1) -2 ...

The crucial property you want (for your algorithm and proof) is: at the end of iteration
1, each region contains at most 1 center of an allocated chunk, where the center of an
allocated chunk of memory is the average of its left and right endpoints, rounded down.

How do you prove such a strange property? You need to rely on the assumption that your
algorithm was correct at the end of the previous iteration—put this strange claim about
centers of allocated chunks in an induction hypothesis, and induct on ¢. Namely, at the
start of iteration ¢, you can assume that your algorithm correctly ended iteration i — 1,
meaning that, when dividing memory into (smaller) regions of size 201, each (small)
region contains at most 1 center of an allocated chunk at the start of the ith iteration.
Now, you need to consider the next two steps of the algorithm: when step 1 calls
ALLOCATE(2?) repeatedly, how does this affect our understanding of regions/centers?
(What tweak of this induction hypothesis is true in between steps 1 and 2 of iteration
i?) Next, you need to figure out a clever plan to free roughly half the memory, so that
when pairs of (small) regions of size 20! get merged into a single (big) region of size 2,
only one chunk center remains in each such (big) region.

Details and conclusion: You should design step 2 so that it frees up exactly half of
the total number of allocated chunks (ignoring off-by-1 issues, which we mostly do not
care about in this course), while preferring to free larger chunks over smaller chunks so
as to free up at least half of the total allocated bytes.

Suppose you have figured out how to design and analyze a good scheme for step 2,
why does this lead to breaking the memory allocator? After i iterations, you should
carefully count and/or bound the parameters of the current memory configuration. The
intuition is that, for each region of size 2¢ that contains a chunk center, none of the
ALLOCATE(2"1) calls in the next iteration can return a chunk centered in this region

!This idea came up in the dynamic programming section of the course: sometimes when you are stuck designing
an algorithm, you can get guidance by trying to “think ahead” to the proof, and figure out what kind of algorithm
could possibly be proven correct.

2This is related to the proof technique for analyzing the competitive ratio of LRU cache we saw in class—these
regions exist only on paper, as a proof technique; we can draw anything we want on our paper, without affecting
what happens on the computer; drawing lines and carefully counting what is between the lines is merely an analysis
technique.

CS 157

Homework 4: Codr Oct. 12, 2018 at 6:00 pm

because it would overlap the chunk already centered there (draw a diagram for this, and
prove it!). Thus, if iteration ¢ ends with ¢ chunks allocated, each centered in a different
region of size 2¢, this means that each of these £ - 2% locations in these regions cannot
be a center of a chunk allocated at the start of the next iteration ¢ + 1. Restated, any
region that already contains a chunk center will be “not available for future large memory
requests”. Carefully track the product, £-2¢ computing the size of all these regions, and,
when this value exceeds the total memory m, point out that step 1 in iteration ¢4 1 must
crash, thus concluding your proof that your algorithm will make the memory allocator
crash.

After each iteration 4, the memory will get more and more fragmented; what is the
maximum value of ¢ for which your analysis makes sense? (Your analysis certainly will
not make sense for ¢ > logy m, since then we are talking about allocating chunks of
memory of size 2! > m.)

Try to write up your algorithm and proof as cleanly as possible. Do not refer to this
handout in your writeup, as this will lead to a confusing presentation. Explain and prove
everything from scratch, aiming for clear communication throughout. Talk to the TAs
if you are having trouble expressing your ideas.

(To understand what you have done, go back and think about how what you have just found
would defeat the scheme you came up with in part 3.)

	
	
	
	

