Large Deviation Bounds
Large Deviation Bounds

A typical probability theory statement:

Theorem (The Central Limit Theorem)

Let X_1, \ldots, X_n be independent identically distributed random variables with common mean μ and variance σ^2. Then

$$
\lim_{n \to \infty} \Pr\left(\frac{\frac{1}{n} \sum_{i=1}^n X_i - \mu}{\sigma/\sqrt{n}} \leq z \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} \, dt.
$$

A typical CS probabilistic tool:

Theorem (Chernoff Bound)

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $\Pr(X_i = 1) = p_i$. Let $\mu = \frac{1}{n} \sum_{i=1}^n p_i$, then

$$
\Pr\left(\frac{1}{n} \sum_{i=1}^n X_i \geq (1 + \delta) \mu \right) \leq e^{-\mu n \delta^2 / 3}.
$$
Theorem

Let \(X_1, \ldots, X_n \) be independent, identically distributed, 0–1 random variables with \(\Pr(X_i = 1) = E[X_i] = p \). Let \(\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \), then for any \(\delta \in [0, 1] \) we have

\[
\Pr(\bar{X}_n \geq (1 + \delta)p) \leq e^{-np\delta^2/3}
\]

and

\[
\Pr(\bar{X}_n \leq (1 - \delta)p) \leq e^{-np\delta^2/2}.
\]
Theorem

Let X_1, \ldots, X_n be independent, $0 - 1$ random variables with $Pr(X_i = 1) = E[X_i] = p_i$. Let $\mu = \sum_{i=1}^{n} p_i$, then for any $\delta \in [0, 1]$ we have

$$
\text{Prob}(\sum_{i=1}^{n} X_i \geq (1 + \delta)\mu) \leq e^{-\mu \delta^2 / 3}
$$

and

$$
\text{Prob}(\sum_{i=1}^{n} X_i \leq (1 - \delta)\mu) \leq e^{-\mu \delta^2 / 2}.
$$
Consider n coin flips. Let X be the number of heads. Markov Inequality gives

$$Pr \left(X \geq \frac{3n}{4} \right) \leq \frac{n/2}{3n/4} \leq \frac{2}{3}.$$

Using the Chebyshev’s bound we have:

$$Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) \leq \frac{4}{n}.$$

Using the Chernoff bound in this case, we obtain

$$Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) = Pr \left(X \geq \frac{n}{2} \left(1 + \frac{1}{2} \right) \right)$$

$$+ Pr \left(X \leq \frac{n}{2} \left(1 - \frac{1}{2} \right) \right)$$

$$\leq e^{-\frac{1}{3} \frac{n}{2} \frac{1}{4}} + e^{-\frac{1}{2} \frac{n}{2} \frac{1}{4}} \leq 2e^{-\frac{n}{24}}.$$
The Basic Idea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:
For any $t > 0$,

$$Pr(X \geq a) = Pr(e^{tX} \geq e^{ta}) \leq \frac{E[e^{tX}]}{e^{ta}}.$$

Similarly, for any $t < 0$

$$Pr(X \leq a) = Pr(e^{tX} \geq e^{ta}) \leq \frac{E[e^{tX}]}{e^{ta}}.$$

Theorem (Markov Inequality)

If a random variable X is non-negative ($X \geq 0$) then

$$\text{Prob}(X \geq a) \leq \frac{E[X]}{a}.$$
The General Scheme:

For any random variable X:

1. computing $E[e^{tX}]$
2. optimize

$$Pr(X \geq a) \leq \min_{t>0} \frac{E[e^{tX}]}{e^{ta}}$$

$$Pr(X \leq a) \leq \min_{t<0} \frac{E[e^{tX}]}{e^{ta}}.$$

3. simplify
Definition

The moment generating function of a random variable X is defined for any real value t as

$$M_X(t) = \mathbb{E}[e^{tX}].$$
Theorem

Let X be a random variable with moment generating function $M_X(t)$. Assuming that exchanging the expectation and differentiation operands is legitimate, then for all $n \geq 1$

$$E[X^n] = M_X^{(n)}(0),$$

where $M_X^{(n)}(0)$ is the n-th derivative of $M_X(t)$ evaluated at $t = 0$.

Proof.

$$M_X^{(n)}(t) = E[X^n e^{tX}].$$

Computed at $t = 0$ we get

$$M_X^{(n)}(0) = E[X^n].$$
Why we can switch the order of the derivative and the expectation?

Assume for simplicity that X has integer values. Let $D(X)$ be the domain of X.

$$M_X(t) = E[e^{tX}] = \sum_{i \in D(X)} e^{ti} Pr(X = i).$$

For finite or uniformly convergent sum:

$$M_X^{(1)}(t) = \frac{d}{dt} E[e^{tX}] = \frac{d}{dt} \left(\sum_{i \in D(X)} e^{ti} Pr(X = i) \right)$$

$$= \sum_{i \in D(X)} \frac{d}{dt} e^{ti} Pr(X = i) = E\left[\frac{d}{dt} e^{ti}\right]$$
Theorem

Let X and Y be two random variables. If

$$M_X(t) = M_Y(t)$$

for all $t \in (-\delta, \delta)$ for some $\delta > 0$, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables then

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

Proof.

$$M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t).$$
Chernoff Bound for Sum of Bernoulli Trials

Theorem

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = \sum_{i=1}^{n} p_i$.

- For any $\delta > 0$,
 \[
 Pr(X \geq (1 + \delta)\mu) \leq \left(\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right)^{\mu}. \quad (1)
 \]

- For $0 < \delta \leq 1$,
 \[
 Pr(X \geq (1 + \delta)\mu) \leq e^{-\mu\delta^2/3}. \quad (2)
 \]

- For $R \geq 6\mu$,
 \[
 Pr(X \geq R) \leq 2^{-R}. \quad (3)
 \]

Chernoff Bound for Sum of Bernoulli Trials

Let X_1, \ldots, X_n be a sequence of independent Bernoulli trials with $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^{n} X_i$, and let

$$
\mu = E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p_i.
$$

For each X_i:

$$
M_{X_i}(t) = E[e^{tX_i}] = p_i e^t + (1 - p_i) = 1 + p_i (e^t - 1) \leq e^{p_i (e^t - 1)}.
$$
\[M_{X_i}(t) = \mathbb{E}[e^{tX_i}] \leq e^{p_i(e^t - 1)}. \]

Taking the product of the \(n \) generating functions we get for \(X = \sum_{i=1}^{n} X_i \)

\[M_X(t) = \prod_{i=1}^{n} M_{X_i}(t) \leq \prod_{i=1}^{n} e^{p_i(e^t - 1)} = e^{\sum_{i=1}^{n} p_i(e^t - 1)} = e^{(e^t - 1)\mu} \]
Applying Markov’s inequality we have for any $t > 0$

$$Pr(X \geq (1 + \delta)\mu) = Pr(e^{tX} \geq e^{t(1+\delta)\mu}) \leq \frac{E[e^{tX}]}{e^{t(1+\delta)\mu}} \leq \frac{e(e^t-1)\mu}{e^{t(1+\delta)\mu}}$$

For any $\delta > 0$, we can set $t = \ln(1 + \delta) > 0$ to get:

$$Pr(X \geq (1 + \delta)\mu) \leq \left(\frac{e^\delta}{(1 + \delta)(1+\delta)}\right)^{\mu}.$$

This proves (1).
We show that for $0 < \delta < 1$,

$$\frac{e^{\delta}}{(1 + \delta)^{(1+\delta)}} \leq e^{-\delta^2/3}$$

or that

$$f(\delta) = \delta - (1 + \delta) \ln(1 + \delta) + \frac{\delta^2}{3} \leq 0$$

in that interval. Computing the derivatives of $f(\delta)$ we get

$$f'(\delta) = 1 - \frac{1 + \delta}{1 + \delta} - \ln(1 + \delta) + \frac{2}{3}\delta = -\ln(1 + \delta) + \frac{2}{3}\delta,$$

$$f''(\delta) = -\frac{1}{1 + \delta} + \frac{2}{3}.$$

$f''(\delta) < 0$ for $0 \leq \delta < 1/2$, and $f''(\delta) > 0$ for $\delta > 1/2$. $f'(\delta)$ first decreases and then increases over the interval $[0, 1]$. Since $f'(0) = 0$ and $f'(1) < 0$, $f'(\delta) \leq 0$ in the interval $[0, 1]$. Since $f(0) = 0$, we have that $f(\delta) \leq 0$ in that interval. This proves (2).
For $R \geq 6\mu$, $\delta \geq 5$.

\[
Pr(X \geq (1 + \delta)\mu) \leq \left(\frac{e^\delta}{(1 + \delta)(1+\delta)} \right)^\mu \\
\leq \left(\frac{e}{6} \right)^R \\
\leq 2^{-R},
\]

that proves (3).
Theorem

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X]$. For $0 < \delta < 1$:

- $Pr(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1 - \delta)(1-\delta)} \right)^{\mu}$. \hfill (4)

- $Pr(X \leq (1 - \delta)\mu) \leq e^{-\mu\delta^2/2}$. \hfill (5)
Using Markov’s inequality, for any \(t < 0 \),

\[
Pr(X \leq (1 - \delta)\mu) = Pr(e^{tX} \geq e^{(1-\delta)t\mu})
\leq \frac{E[e^{tX}]}{e^{t(1-\delta)\mu}}
\leq \frac{e^{(e^t-1)\mu}}{e^{t(1-\delta)\mu}}
\]

For \(0 < \delta < 1 \), we set \(t = \ln(1 - \delta) < 0 \) to get:

\[
Pr(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1 - \delta)(1-\delta)} \right)^{\mu}
\]

This proves (4).
We need to show:

\[
f(\delta) = -\delta - (1 - \delta) \ln(1 - \delta) + \frac{1}{2} \delta^2 \leq 0.
\]
We need to show:

\[f(\delta) = -\delta - (1 - \delta) \ln(1 - \delta) + \frac{1}{2} \delta^2 \leq 0. \]

Differentiating \(f(\delta) \) we get

\[
\begin{align*}
 f'(\delta) &= \ln(1 - \delta) + \delta, \\
 f''(\delta) &= -\frac{1}{1 - \delta} + 1.
\end{align*}
\]

Since \(f''(\delta) < 0 \) for \(\delta \in (0, 1) \), \(f'(\delta) \) decreasing in that interval. Since \(f'(0) = 0 \), \(f'(\delta) \leq 0 \) for \(\delta \in (0, 1) \). Therefore \(f(\delta) \) is non increasing in that interval.

\(f(0) = 0 \). Since \(f(\delta) \) is non increasing for \(\delta \in [0, 1) \), \(f(\delta) \leq 0 \) in that interval, and (5) follows.
Example: Coin flips

Theorem (The Central Limit Theorem)

Let X_1, \ldots, X_n be independent identically distributed random variables with common mean μ and variance σ^2. Then

$$\lim_{n \to \infty} \Pr\left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \sigma / \sqrt{n} \leq z \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt.$$

$\Phi(2.23) = 0.99$, thus, $\lim_{n \to \infty} \Pr\left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \sigma / \sqrt{n} \leq 2.23 \right) = 0.99$

For coin flips:

$$\lim_{n \to \infty} \Pr\left(\frac{1}{n} \sum_{i=1}^{n} X_i - 1/2 \ 1/(2\sqrt{n}) \leq 2.23 \right) = 0.99$$

$$\lim_{n \to \infty} \Pr\left(\sum_{i=1}^{n} X_i - \frac{n}{2} \geq 2.23 \sqrt{n}/2 \right) = 0.01$$

$\Phi(3.5) \approx 0.999$, $\lim_{n \to \infty} \Pr\left(\sum_{i=1}^{n} X_i - \frac{n}{2} \geq 3.5 \sqrt{n}/2 \right) = 0.001$
Example: Coin flips

Let X be the number of heads in a sequence of n independent fair coin flips.

\[
Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{1}{2} \sqrt{6 \ln n} \right)
\]

\[
= Pr \left(X \geq \frac{n}{2} \left(1 + \sqrt{\frac{6 \ln n}{n}} \right) \right)
\]

\[
+ Pr \left(X \leq \frac{n}{2} \left(1 - \sqrt{\frac{6 \ln n}{n}} \right) \right)
\]

\[
\leq e^{-\frac{1}{3} \frac{n}{2} \frac{6 \ln n}{n}} + e^{-\frac{1}{2} \frac{n}{2} \frac{6 \ln n}{n}} \leq \frac{2}{n}.
\]

Note that the standard deviation is $\sqrt{n/4}$
Example: estimate the value of π

- Choose X and Y independently and uniformly at random in $[0, 1]$.
- Let
 \[Z = \begin{cases}
 1 & \text{if } \sqrt{X^2 + Y^2} \leq 1, \\
 0 & \text{otherwise},
 \end{cases} \]
- $\frac{1}{2} \leq p = \Pr(Z = 1) = \frac{\pi}{4} \leq 1$.
- $4E[Z] = \pi$.

• Let Z_1, \ldots, Z_m be the values of m independent experiments.

 $W_m = \sum_{i=1}^{m} Z_i$.

•

 $E[W_m] = E\left[\sum_{i=1}^{m} Z_i \right] = \sum_{i=1}^{m} E[Z_i] = \frac{m\pi}{4}$,

• $\tilde{\pi}_m = \frac{4}{m} W_m$ is an unbiased estimate for π (i.e. $E[\tilde{\pi}_m] = \pi$)

• How many samples do we need to obtain a good estimate?

$$\Pr(|\tilde{\pi}_m - \pi| \geq \epsilon \pi) = \Pr \left(|W - \frac{m\pi}{4}| \geq \frac{\epsilon m\pi}{4} \right)$$

$$= \Pr \left(|W_m - E[W_m]| \geq \epsilon E[W_m] \right)$$

$$= \Pr \left(W_m - E[W_m] \geq \epsilon E[W_m] \right) + \Pr \left(W_m - E[W_m] \leq \epsilon E[W_m] \right)$$

$$\leq e^{-\frac{1}{3} \frac{m\pi}{4} \epsilon^2} + e^{-\frac{1}{2} \frac{m\pi}{4} \epsilon^2} \leq 2e^{-\frac{1}{12} m\pi \epsilon^2}.$$

Since it's easy to verify that $\pi > 2$

$$\Pr(|\tilde{\pi}_m - \pi| \geq \epsilon \pi) \leq 2e^{-\frac{1}{12} m\pi \epsilon^2} \leq e^{-\frac{1}{6} m\epsilon^2} = \delta$$

For $\epsilon = 0.1$ and $\delta = 0.01$ we need $m \geq 4000$.
Set Balancing

Given an $n \times n$ matrix A with entries in $\{0, 1\}$, let

$$
\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
=
\begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{pmatrix}.
$$

Find a vector \bar{b} with entries in $\{-1, 1\}$ that minimizes

$$
\|A\bar{b}\|_\infty = \max_{i=1,\ldots,n} |c_i|.
$$
Theorem

For a random vector \overline{b}, with entries chosen independently and with equal probability from the set $\{-1, 1\}$,

$$\Pr(\|A\overline{b}\|_\infty \geq \sqrt{4n \ln n}) \leq \frac{2}{n}. $$

The $\sum_{i=1}^{n} a_{j,i}b_i$ (excluding the zero terms) is a sum of independent $-1, 1$ random variable. We need a bound on such sum.
Chernoff Bound for Sum of \(\{-1, +1\} \) Random Variables

Theorem

Let \(X_1, \ldots, X_n \) be independent random variables with

\[
\Pr(X_i = 1) = \Pr(X_i = -1) = \frac{1}{2}.
\]

Let \(X = \sum_{1}^{n} X_i \). For any \(a > 0 \),

\[
\Pr(X \geq a) \leq e^{-\frac{a^2}{2n}}.
\]

de Moivre – Laplace approximation: For any \(k \), such that \(|k - np| \leq a \)

\[
\binom{n}{k} p^k (1 - p)^{n-k} \approx \frac{1}{\sqrt{2\pi np(1 - p)}} e^{-\frac{a^2}{2np(1-p)}}
\]
For any $t > 0$,

$$E[e^{tX_i}] = \frac{1}{2} e^t + \frac{1}{2} e^{-t}.$$

$$e^t = 1 + t + \frac{t^2}{2!} + \cdots + \frac{t^i}{i!} + \cdots$$

and

$$e^{-t} = 1 - t + \frac{t^2}{2!} + \cdots + (-1)^i \frac{t^i}{i!} + \cdots$$

Thus,

$$E[e^{tX_i}] = \frac{1}{2} e^t + \frac{1}{2} e^{-t} = \sum_{i \geq 0} \frac{t^{2i}}{(2i)!}$$

$$\leq \sum_{i \geq 0} \left(\frac{t^2}{2}\right)^i \frac{1}{i!} = e^{t^2/2}$$
E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}] \leq e^{nt^2/2},

Pr(X \geq a) = Pr(e^{tX} > e^{ta}) \leq \frac{E[e^{tX}]}{e^{ta}} \leq e^{t^2n/2-ta}.

Setting \(t = a/n \) yields

\[Pr(X \geq a) \leq e^{-\frac{a^2}{2n}}. \]
By symmetry we also have

Corollary

Let X_1, \ldots, X_n be independent random variables with

$$Pr(X_i = 1) = Pr(X_i = -1) = \frac{1}{2}.$$

Let $X = \sum_{i=1}^{n} X_i$. Then for any $a > 0$,

$$Pr(|X| > a) \leq 2e^{-\frac{a^2}{2n}}.$$
Application: Set Balancing

Theorem

For a random vector \bar{b}, with entries chosen independently and with equal probability from the set $\{-1, 1\}$,

$$\Pr(\|A\bar{b}\|_\infty \geq \sqrt{4n \ln n}) \leq \frac{2}{n} \quad (6)$$

- Consider the i-th row $\bar{a}_i = a_{i,1}, \ldots, a_{i,n}$.
- Let k be the number of 1’s in that row.
- $Z_i = \sum_{j=1}^{k} a_{i,j} b_{i,j}$.
- If $k \leq \sqrt{4n \ln n}$ then clearly $Z_i \leq \sqrt{4n \ln n}$.
If $k > \sqrt{4n \log n}$, the k non-zero terms in the sum Z_i are independent random variables, each with probability $1/2$ of being either $+1$ or -1.

Using the Chernoff bound:

$$Pr \left\{ |Z_i| > \sqrt{4n \log n} \right\} \leq 2e^{-4n \log n/(2k)} \leq 2e^{-4n \log n/(2n)} \leq \frac{2}{n^2},$$

where we use the fact that $n \geq k$.

The result follows by union bound on the n rows.
Hoeffding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding’s Inequality)

Let X_1, \ldots, X_n be independent random variables such that for all $1 \leq i \leq n$, $E[X_i] = \mu$ and $Pr(a \leq X_i \leq b) = 1$. Then

$$Pr\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| \geq \epsilon\right) \leq 2e^{-2n\epsilon^2/(b-a)^2}$$

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that $Pr(X \in [a, b]) = 1$ and $E[X] = 0$. Then for every $\lambda > 0$,

$$E[E^{\lambda X}] \leq e^{\lambda^2(a-b)^2/8}.$$
Proof of the Lemma

Since $f(x) = e^{\lambda x}$ is a convex function, for any $\alpha \in (0, 1)$ and $x \in [a, b],$

$$f(X) \leq \alpha f(a) + (1 - \alpha)f(b).$$

Thus, for $\alpha = \frac{b-x}{b-a} \in (0, 1),$

$$e^{\lambda x} \leq \frac{b-x}{b-a} e^{\lambda a} + \frac{x-a}{b-a} e^{\lambda b}.$$

Taking expectation, and using $E[X] = 0,$ we have

$$E[e^{\lambda X}] \leq \frac{b}{b-a} e^{\lambda a} + \frac{a}{b-a} e^{\lambda b} \leq e^{\lambda^2 (b-a)^2/8}.$$
Proof of the Bound

Let $Z_i = X_i - E[X_i]$ and $Z = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$Pr(Z \geq \epsilon) \leq e^{-\lambda \epsilon} E[e^{\lambda Z}] \leq e^{-\lambda \epsilon} \prod_{i=1}^{n} E[e^{\lambda X_i/n}] \leq e^{-\lambda \epsilon + \frac{\lambda^2(b-a)^2}{8n}}$$

Set $\lambda = \frac{4n\epsilon}{(b-a)^2}$ gives

$$Pr\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| \geq \epsilon\right) = Pr(Z \geq \epsilon) \leq 2e^{-2n\epsilon^2/(b-a)^2}$$
A More General Version

Theorem

Let X_1, \ldots, X_n be independent random variables with $E[X_i] = \mu_i$ and $Pr(B_i \leq X_i \leq B_i + c_i) = 1$, then

$$Pr(|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i| \geq \epsilon) \leq 2e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}}$$
Application: Job Completion

We have \(n \) jobs, job \(i \) has expected run-time \(\mu_i \). We terminate job \(i \) if it runs \(\beta \mu_i \) time. When will the machine will be free of jobs?

\(X_i = \text{execution time of job } i \). \(0 \leq X_i \leq \beta \mu_i \).

\[
Pr\left(\left| \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i \right| \geq \epsilon \sum_{i=1}^{n} \mu_i \right) \leq 2e^{-\frac{2\epsilon^2 \left(\sum_{i=1}^{n} \mu_i \right)^2}{\sum_{i=1}^{n} \beta^2 \mu_i^2}}
\]

Assume all \(\mu_i = \mu \)

\[
Pr\left(\left| \sum_{i=1}^{n} X_i - n\mu \right| \geq \epsilon n\mu \right) \leq 2e^{-\frac{2\epsilon^2 n^2 \mu^2}{n\beta^2 \mu^2}} = 2e^{-2\epsilon^2 n / \beta^2}
\]

Let \(\epsilon = \beta \sqrt{\frac{\log n}{n}} \), then

\[
Pr\left(\left| \sum_{i=1}^{n} X_i - n\mu \right| \geq \beta \mu \sqrt{n \log n} \right) \leq 2e^{-\frac{2\beta^2 \mu^2 n \log n}{n\beta^2 \mu^2}} = \frac{2}{n^2}
\]