Example: Finding the k-Smallest Element in an ordered set.

Procedure Order(S, k);

Input: A set S, an integer $k \leq |S| = n$.

Output: The k smallest element in the set S.
Example: Finding the k-Smallest Element

Procedure Order(S, k);

Input: A set S, an integer $k \leq |S| = n$.

Output: The k smallest element in the set S.

1. If $|S| = k = 1$ return S.
2. Choose a random element y uniformly from S.
3. Compare all elements of S to y. Let $S_1 = \{x \in S \mid x \leq y\}$ and $S_2 = \{x \in S \mid x > y\}$.
4. If $k \leq |S_1|$ return Order(S_1, k) else return Order($S_2, k - |S_1|$).

Theorem

1. The algorithm always returns the k-smallest element in S.
2. The algorithm performs $O(n)$ comparisons in expectation.
Random Variable

Definition

A random variable X on a sample space Ω is a real-valued function on Ω; that is, $X : \Omega \rightarrow \mathbb{R}$. A discrete random variable is a random variable that takes on only a finite or countably infinite number of values.

Discrete random variable X and real value a: the event “$X = a$” represents the set $\{s \in \Omega : X(s) = a\}$.

$$
\Pr(X = a) = \sum_{s \in \Omega : X(s) = a} \Pr(s)
$$
Independence

Definition

Two random variables X and Y are independent if and only if

$$\Pr((X = x) \cap (Y = y)) = \Pr(X = x) \cdot \Pr(Y = y)$$

for all values x and y. Similarly, random variables X_1, X_2, \ldots, X_k are mutually independent if and only if for any subset $I \subseteq [1, k]$ and any values $x_i, i \in I$,

$$\Pr \left(\bigcap_{i \in I} X_i = x_i \right) = \prod_{i \in I} \Pr(X_i = x_i).$$
The expectation (or mean or average) of a discrete random variable X, denoted by $E[X]$, is given by

$$E[X] = \sum_{i} i \Pr(X = i),$$

where the summation is over all values in the range of X. The expectation is finite if $\sum_{i} |i| \Pr(X = i)$ converges; otherwise, the expectation is unbounded.

The expectation (or mean or average) is a weighted sum over all possible values of the random variable.
The **median** of a random variable X is a value m such that

$$Pr(X < m) \leq 1/2 \quad \text{and} \quad Pr(X > m) < 1/2.$$
Linearity of Expectation

Theorem

For any two random variables X and $Y

$$E[X + Y] = E[X] + E[Y].$$

Lemma

For any constant c and discrete random variable X,

$$E[cX] = cE[X].$$
Example: Finding the k-Smallest Element

Procedure $\text{Order}(S, k)$;

Input: A set S, an integer $k \leq |S| = n$.

Output: The k smallest element in the set S.

1. If $|S| = k = 1$ return S.
2. Choose a random element y uniformly from S.
3. Compare all elements of S to y. Let $S_1 = \{x \in S \mid x \leq y\}$ and $S_2 = \{x \in S \mid x > y\}$.
4. If $k \leq |S_1|$ return $\text{Order}(S_1, k)$ else return $\text{Order}(S_2, k - |S_1|)$.

Theorem

1. The algorithm always returns the k-smallest element in S.
2. The algorithm performs $O(n)$ comparisons in expectation.
Proof

• We say that a call to Order(S, k) was *successful* if the random element was in the middle $1/3$ of the set S. A call is successful with probability $1/3$.

• After the i-th successful call the size of the set S is bounded by $n(2/3)^i$. Thus, need at most $\log_{3/2} n$ successful calls.

• Let X be the total number of comparisons. Let T_i be the number of iterations between the i-th successful call (included) and the $i + 1$-th (excluded):
 $$E[X] \leq \sum_{i=0}^{\log_{3/2} n} n(2/3)^i E[T_i].$$

• T_i has a geometric distribution $G(1/3)$.
The Geometric Distribution

Definition

A geometric random variable X with parameter p is given by the following probability distribution on $n = 1, 2, \ldots$.

$$
Pr(X = n) = (1 - p)^{n-1} p.
$$

Example: repeatedly draw independent Bernoulli random variables with parameter $p > 0$ until we get a 1. Let X be number of trials up to and including the first 1. Then X is a geometric random variable with parameter p.
Lemma

Let X be a discrete random variable that takes on only non-negative integer values. Then

$$
E[X] = \sum_{i=1}^{\infty} \Pr(X \geq i).
$$

Proof.

$$
\sum_{i=1}^{\infty} \Pr(X \geq i) = \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} \Pr(X = j)
$$

$$
= \sum_{j=1}^{\infty} \sum_{i=1}^{j} \Pr(X = j)
$$

$$
= \sum_{j=1}^{\infty} j \Pr(X = j) = E[X].
$$
For a geometric random variable X with parameter p,

$$\Pr(X \geq i) = \sum_{n=i}^{\infty} (1 - p)^{n-1} p = (1 - p)^{i-1}.$$

$$E[X] = \sum_{i=1}^{\infty} \Pr(X \geq i)$$

$$= \sum_{i=1}^{\infty} (1 - p)^{i-1}$$

$$= \frac{1}{1 - (1 - p)}$$

$$= \frac{1}{p}$$
Proof

- Let X be the total number of comparisons.
- Let T_i be the number of iterations between the i-th successful call (included) and the $(i + 1)$-th (excluded):
 - $\mathbb{E}[X] \leq \sum_{i=0}^{\log_3 2} n (2/3)^i \mathbb{E}[T_i]$.
 - $T_i \sim G(1/3)$, therefore $\mathbb{E}[T_i] = 3$.
- Expected number of comparisons:
 \[\mathbb{E}[X] \leq \sum_{j=0}^{\log_3 2} 3n \left(\frac{2}{3}\right)^j \leq 9n. \]

Theorem

1. The algorithm always returns the k-smallest element in S
2. The algorithm performs $O(n)$ comparisons in expectation.

What is the probability space?
Finding the *k*-Smallest Element with no Randomization

Procedure Det-Order(*S*, *k*);

Input: An array *S*, an integer \(k \leq |S| = n \).

Output: The *k* smallest element in the set *S*.

1. If \(|S| = k = 1 \) return *S*.
2. Let *y* be the first element in *S*.
3. Compare all elements of *S* to *y*. Let \(S_1 = \{ x \in S \mid x \leq y \} \) and \(S_2 = \{ x \in S \mid x > y \} \).
4. If \(k \leq |S_1| \) return Det-Order(*S*₁, *k*) else return Det-Order(*S*₂, \(k - |S_1| \)).

Theorem

The algorithm returns the *k*-smallest element in *S* and performs \(O(n) \) comparisons in expectation over all possible input permutations.
Randomized Algorithms:

- Analysis is true for any input.
- The sample space is the space of random choices made by the algorithm.
- Repeated runs are independent.

Probabilistic Analysis:

- The sample space is the space of all possible inputs.
- If the algorithm is deterministic repeated runs give the same output.
Algorithm classification

A **Monte Carlo Algorithm** is a randomized algorithm that may produce an incorrect solution. For decision problems: A **one-side error** Monte Carlo algorithm errs only one one possible output, otherwise it is a **two-side error** algorithm.

A **Las Vegas** algorithm is a randomized algorithm that **always** produces the correct output.

In both types of algorithms the run-time is a random variable.