
The Monte Carlo Method

• Estimating through sampling (estimating π, p-value,
integrals,...)

• The main difficulty - sampling sparse events

• The general sampling to counting reduction

• The Markov Chain Monte Carlo (MCMC) method -
Metropolis Algorithm
• Convergence rate

• Coupling
• Path coupling
• Eigenvalues and conductance



The Monte Carlo Method

Example: estimate the value of π.

1

• Choose X and Y independently and uniformly at random in
[0, 1].

• Let

Z =

{
1 if

√
X 2 + Y 2 ≤ 1,

0 otherwise,

• Pr(Z = 1) = π
4 .

• 4E[Z ] = π.



• Let Z1, . . . ,Zm be the values of m independent experiments.
W =

∑m
i=1 Zi .

•

E[W ] = E

[
m∑
i=1

Zi

]
=

m∑
i=1

E[Zi ] =
mπ

4
,

• W ′ = 4
mW is an unbiased estimate for π.

•

Pr(|W ′ − π| ≥ επ) = Pr
(
|W − mπ

4
| ≥ εmπ

4

)
= Pr (|W − E[W ]| ≥ εE[W ])

≤ 2e−
1

12
mπε2

.



(ε, δ)-Approximation

Definition

A randomized algorithm gives an (ε, δ)-approximation for the value
V if the output X of the algorithm satisfies

Pr(|X − V | ≤ εV ) ≥ 1− δ.

Theorem

Let X1, . . . ,Xm be independent and identically distributed indicator

random variables, with µ = E [Xi ]. If m ≥ 3 ln 2
δ

ε2µ
, then

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ εµ
)
≤ δ.

That is, m samples provide an (ε, δ)-approximation for µ.



Monte Carlo Integration

We want to compute the definite (numeric) integral
∫ b
a f (x)dx

when the integral does not have a close form.
Let a = x0, . . . , xN = b such that for all i , xi+1− xi = b−a

N = δ(N).

∫ b

a
f (x)dx = lim

δ(N)→0

N∑
i=0

f (xi )δ(N) = lim
N→∞

b − a

N

N∑
i=0

f (xi ).

We need to estimate

f̄ = lim
N→∞

1

N

N∑
i=0

f (xi ),

which is the expected value of f () in [a, b].



We need to estimate

f̄ = lim
N→∞

1

N

N∑
i=0

f (xi ).

We choose N independent samples y1, . . . , yN uniformly distributed
in [a, b].

E [
1

N

N∑
i=1

f (yi )] = f̄

Var [
1

N

N∑
i=1

f (yi )] =
1

N
Var [f (x)]

Pr(| 1
N

N∑
i=1

f (yi )− f̄ | ≥ ε) ≤ Var [f (x)]

Nε2



Approximate Counting

Example counting problems:

1 How many spanning trees in a graph?

2 How many perfect matchings in a graph?

3 How many independent sets in a graph?

4 ....



DNF Counting (Karp, Luby, Madras)

DNF = Disjunctive Normal Form.
Problem: How many satisfying assignments to a DNF formula?
A DNF formula is a disjunction of clauses.
Each clause is a conjunction of literals.

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4)

Compare to CNF.

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ · · ·

m clauses, n variables
Let’s first convince ourselves that obvious approaches don’t work!



DNF counting is hard

Question: Why?
We can reduce CNF satisfiability to DNF counting.
The negation of a CNF formula is in DNF.

1 CNF formula f

2 get the DNF formula (f̄ )

3 count satisfying assignments to f̄

4 If it was 2n, then f is unsatisfiable.



DNF counting is #P complete

#P is the counting analog of NP.
Any problem in #P can be reduced (in polynomial time) to the
DNF counting problem.
Example #P complete problems:

1 How many Hamilton circuits does a graph have?

2 How many satisfying assignments does a CNF formula have?

3 How many perfect matchings in a graph?

What can we do about a hard problem?



(ε, δ) FPRAS for DNF counting

n variables, m clauses.
FPRAS = “Fully Polynomial Randomized Approximation Scheme”
Notation:
U: set of all possible assignments to variables
|U| = 2n.
H ⊂ U: set of satisfying assignments
Want to estimate Y = |H|
Give ε > 0, δ > 0, find estimate X such that

1 Pr[|X − Y | > εY ] < δ

2 Algorithm should be polynomial in 1/ε, 1/δ, n and m.



Monte Carlo method

Here’s the obvious scheme.
1. Repeat N times:

1.1. Sample x randomly from U
1.2. Count a success if x ∈ H

2. Return “fraction of successes”× |U|.
Question: How large should N be?
We have to evaluate the probability of our estimate being good.



Let ρ =
|H|
|U|

.

Zi = 1 if i-th trial was successful

Zi =

{
1 with probability ρ

0 with probability 1− ρ

Z =
N∑
i=1

Zi is a binomial r.v

E [Z ] = Nρ

X =
Z

N
|U| is our estimate of |H|



Probability that our algorithm succeeds

Recall: X denotes our estimate of |H|.

Pr[(1− ε)|H| < X < (1 + ε)|H|]
= Pr[(1− ε)|H| < Z |U|/N < (1 + ε)|H|]
= Pr[(1− ε)Nρ < Z < (1 + ε)Nρ]

> 1− e−Nρε
2/3 − e−Nρε

2/2

> 1− 2e−Nρε
2/3

where we have used Chernoff bounds.
For an (ε, δ) approximation, this has to be greater than 1− δ,

2e−Nρε
2/3 < δ

N >
3

ρε2
log

2

δ



Theorem

Let ρ = |H|/|U|. Then the Monte Carlo method is an (ε, δ)
approximation scheme for estimating |H| provided that
N > 3

ρε2 log 2
δ .

Are we done? No!

Why?



What’s wrong?

How large could
1

ρ
be?

ρ is the fraction of satisfying assignments.

1 The number of possible assignments is 2n.

2 Maybe there are only a polynomial (in n) number of satisfying
assignments.

3 So,
1

ρ
could be exponential in n.

Question: An example where formula has only a few assignments?



The trick: Change the Sampling Space

Increase the hit rate (ρ)!
Sample from a different universe, ρ is higher, and all elements of H
still represented.

What’s the new universe?
Notation: Hi set of assignments that satisfy clause i .
H = H1 ∪ H2 ∪ . . .Hm

Define a new universe

U = H1

⊎
H2

⊎
. . .
⊎

Hm

⊎
means multiset union.

Element of U is (v , i) where v is an assignment, i is the satisfied
clause.



Example - Partition by clauses

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4)

x1 x2 x3 x4 Clause

0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1

0 1 1 0 2
0 1 1 1 2
1 1 1 0 2
1 1 1 1 2

1 1 0 1 3

0 0 1 0 4
0 1 1 0 4
1 0 1 0 4
1 1 1 0 4



More about the universe U

1 Element of U is (v , i) where v is an assignment, i is the
satisfied clause.

2 U contains only the satisfying assignments.

3 U contains the same satisfying assignment many times.
U = {(v , i)|v ∈ Hi}

4 Each satisfying assignment v appears in as many clauses as it
satisfies.



One way of looking at U

Partition by clauses.
m partitions, partition i contains Hi .



Another way of looking at U

Partition by assignments (one region for each assignment v).
Each partition corresponds to an assignment.
Can we count the different (distinct) assignments?



Example - Partition by assignments

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4)

x1 x2 x3 x4 Clause

0 0 1 0 4

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1
0 1 1 0 2
0 1 1 0 4

0 1 1 1 1
0 1 1 1 2

1 0 1 0 4

1 1 0 1 3

1 1 1 0 2
1 1 1 0 4

1 1 1 1 2



Canonical element

Crucial idea: For each assignment group, find a canonical element
in U.
An element (v , i) is canonical if f ((v , i)) = 1

f ((v , i)) =

{
1 if i = min{j : v ∈ Hj}
0 otherwise

For every assignment group, exactly one canonical element.
So, count the number of canonical elements!
Note: could use any other definition as long as exactly one
canonical element per assignment



Count canonical elements

Reiterating:

1 Number of satisfying assignments =
Number of canonical elements.

2 Count number of canonical elements.

3 Back to old random sampling method for counting!



What is ρ?

Lemma

ρ ≥ 1

m
, (pretty large).

Proof:
|H| = | ∪mi=1 Hi |, since H is a normal union.
So |Hi | ≤ |H|
Recall U = H1

⊎
H2
⊎
. . .
⊎
Hm

|U| =
∑m

i=1 |Hi |, since U is a multiset union.
|U| ≤ m|H|

ρ =
|H|
|U|
≥ 1

m



How to generate a random element in U?

Look at the partition of U by clauses.
Algorithm Select:

1 Pick a random clause weighted according to the area it
occupies.

Pr[i ] =
|Hi |
|U|

=
|Hi |∑m
1 |Hj |

|Hi | = 2(n−ki ) where ki is the number of literals in clause i .

2 Choose a random satisfying assignment in Hi .
• Fix the variables required by clause i .
• Assign random values to the rest to get v

(v , i) is the random element.

Running time: O(n).



How to test if canonical assignment?

Or how to evaluate f ((v , i))?
Algorithm Test:

1 Test every clause to see if v satisfies it.
cov(v) = {(v , j)|v ∈ Hj}

2 If (v , i) the smallest j in cov(v), then f (v , i) = 1, else 0.

Running time: O(nm).



Back to random sampling

Algorithm Coverage:

1 s ← 0 (number of successes)

2 Repeat N times:
• Select (v , i) using Select.
• if f (v , i) = 1 (check using Test) then success, increment s.

3 Return s|U|/N.

Number of samples needed is (from Theorem 4):

N =
3

ε2ρ
ln

2

δ
≤ 3m

ε2
ln

2

δ

Sampling, testing: polynomial in n and m
We have an FPRAS

Theorem

The Coverage algorithm yields an (ε, δ) approximation to |H|
provided that the number of samples N ≥ 3m

ε2 log 2
δ .



Size of Union of Sets

Let H1, . . . ,Hk be subsets of a finite set S . What is the size of
H = ∪ki=1Hi?

Theorem

The Coverage algorithm yields an (ε, δ) approximation to |H|
provided that the number of samples N ≥ 3k

ε2 log 2
δ .



The Monte-Carlo Markov-Chain
(MCMC) Method

Given a graph G = (V ,E ), an independent set I in G is a set of
vertices connected by no edges in G .
Ω(G ) = set of independent sets in G .

|V | ≤ |Ω(G )| ≤ 2|V |

We want to compute an (ε, δ)-approximation for |Ω(G )|.

Definition

A randomized algorithm gives an (ε, δ)-approximation for the value
V if the output X of the algorithm satisfies

Pr(|X − V | ≤ εV ) ≥ 1− δ.



Simple Monte-Carlo?

Theorem

Let X1, . . . ,Xm be independent and identically distributed indicator

random variables, with µ = E [Xi ]. If m ≥ 3 ln 2
δ

ε2µ
, then

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ εµ
)
≤ δ.

That is, m samples provide an (ε, δ)-approximation for µ.

Repeat m times: choose a random set of vertices, if independent
set Xi = 1, else Xi = 0.

µ̃ =
1

m

n∑
i=1

Xi
˜|Ω(G )| = µ̃2|V |

|V |
2|V |

≤ µ̃ ≤ 1

µ = E [µ̃] can be exponentially small, |V |
2|V |
≤ µ ≤ 1.

Can we sample from a different domain, such that the
corresponding µ = Ω(1)



Counting Independent Sets

Input: a graph G = (V ,E ). |V | = n, |E | = m.
Let e1, . . . , em be an arbitrary ordering of the edges.

Gi = (V ,Ei ), where Ei = {e1, . . . , ei}

G = Gm, G0 = (V , ∅) and Gi−1 is obtained from Gi be removing a
single edge.
Ω(Gi ) = the set of independent sets in Gi .

|Ω(G )| =
|Ω(Gm)|
|Ω(Gm−1)|

×|Ω(Gm−1)|
|Ω(Gm−2)|

×|Ω(Gm−2)|
|Ω(Gm−3)|

×· · ·×|Ω(G1)|
|Ω(G0)|

×|Ω(G0)|.

ri =
|Ω(Gi )|
|Ω(Gi−1)|

, |Ω(G )| = 2n
m∏
i=1

ri



Lemma

ri ≥ 1/2.

Proof.

Ω(Gi ) ⊆ Ω(Gi−1).

Suppose that Gi−1 and Gi differ in the edge {u, v}.
An independent set in Ω(Gi−1) \ Ω(Gi ) contains both u and v . To
bound the size of the set Ω(Gi−1) \ Ω(Gi ), we associate each
I ∈ Ω(Gi−1) \ Ω(Gi ) with an independent set I \ {v} ∈ Ω(Gi ). An
independent set I ′ ∈ Ω(Gi ) is associated with no more than one
independent set I ∪ {v} ∈ Ω(Gi−1) \ Ω(Gi ), and thus
|Ω(Gi−1) \ Ω(Gi )| ≤ |Ω(Gi )|. It follows that

ri =
|Ω(Gi )|
|Ω(Gi−1)|

=
|Ω(Gi )|

|Ω(Gi )|+ |Ω(Gi−1) \ Ω(Gi )|
≥ 1/2.



Estimating ri
Input: Graphs Gi−1 = (V ,Ei−1) and Gi = (V ,Ei ).
Output: r̃i = an approximation of ri .

1 X ← 0.

2 Repeat for M = 12m2ε−2 ln 2m
δ independent trials:

1 Generate an uniform sample from Ω(Gi−1);
2 If the sample is an independent set in Gi , let X ← X + 1.

3 Return r̃i ← X
M .

Lemma

When m ≥ 1 and 0 < ε ≤ 1, the procedure for estimating ri yields
an estimate r̃i that is (ε/2m, δ/m)-approximation for ri .



How good is this estimate?

Lemma

When m ≥ 1 and 0 < ε ≤ 1, the procedure for estimating ri yields
an estimate r̃i that is (ε/2m, δ/m)-approximation for ri .

• Our estimate is 2n
∏m

i=1 r̃i
• The true number is |Ω(G )| = 2n

∏m
i=1 ri .

• To evaluate the error in our estimate we need to bound the
ratio

R =
m∏
i=1

r̃i
ri
.



How good is this estimate?

Lemma

Suppose that for all i , 1 ≤ i ≤ m, r̃i is an
(ε/2m, δ/m)-approximation for ri . Then

Pr(|R − 1| ≤ ε) ≥ 1− δ.

For each 1 ≤ i ≤ m, we have

Pr
(
|r̃i − ri | ≤

ε

2m
ri

)
≥ 1− δ

m
.

Equivalently,

Pr
(
|r̃i − ri | >

ε

2m
ri

)
<

δ

m
.



By the union bound the probability that |r̃i − ri | > ε
2m ri for any i is

at most δ, and hence |r̃i − ri | ≤ ε
2m ri for all i with probability at

least 1− δ. Equivalently,

1− ε

2m
≤ r̃i

ri
≤ 1 +

ε

2m

holds for all i with probability at least 1− δ. When these bounds
hold for all i , we can combine them to obtain

1− ε ≤
(

1− ε

2m

)m
≤

m∏
i=1

r̃i
ri
≤
(

1 +
ε

2m

)m
≤ (1 + ε),



Estimating ri
Input: Graphs Gi−1 = (V ,Ei−1) and Gi = (V ,Ei ).
Output: r̃i = an approximation of ri .

1 X ← 0.

2 Repeat for M = 12m2ε−2 ln 2m
δ independent trials:

1 Generate an uniform sample from Ω(Gi−1);
2 If the sample is an independent set in Gi , let X ← X + 1.

3 Return r̃i ← X
M .

How do we Generate an (almost) uniform sample from
Ω(Gi−1)?



Definition

Let w be the (random) output of a sampling algorithm for a finite
sample space Ω. The sampling algorithm generates an ε-uniform
sample of Ω if, for any subset S of Ω,∣∣∣∣Pr(w ∈ S)− |S |

|Ω|

∣∣∣∣ ≤ ε.
A sampling algorithm is a fully polynomial almost uniform sampler
(FPAUS) for a problem if, given an input x and a parameter ε > 0,
it generates an ε-uniform sample of Ω(x), and it runs in time
polynomial in ln ε−1 and the size of the input x .



From Approximate Sampling to Approximate
Counting

Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for
independent sets in any graph, we can construct a fully polynomial
randomized approximation scheme (FPRAS) for the number of
independent sets in a graph G with maximum degree at most ∆.



The Markov Chain Monte Carlo Method

Consider a Markov chain whose states are independent sets in a
graph G = (V ,E ):

1 X0 is an arbitrary independent set in G .

2 To compute Xi+1:

1 Choose a vertex v uniformly at random from V .
2 If v ∈ Xi then Xi+1 = Xi \ {v};
3 if v 6∈ Xi , and adding v to Xi still gives an independent set,

then Xi+1 = Xi ∪ {v};
4 otherwise, Xi+1 = Xi .

• The chain is irreducible

• The chain is aperiodic

• For y 6= x , Px ,y = 1/|V | or 0

• ⇒ uniform stationary distribution.



Time Reversible Markov Chain

Theorem

Consider a finite, irreducible, and ergodic Markov chain on n states
with transition matrix P. If there are non-negative numbers
π̄ = (π0, . . . , πn) such that

∑n
i=0 πi = 1, and for any pair of states

i , j ,
πiPi ,j = πjPj ,i ,

then π̄ is the stationary distribution corresponding to P.

Proof.

n∑
i=0

πiPi ,j =
n∑

i=0

πjPj ,i = πj .

Thus π̄ satisfies π̄ = π̄P, and
∑n

i=0 πi = 1, and π̄ must be the
unique stationary distribution of the Markov chain.



N(x)− set of neighbors of x . Let M ≥ maxx∈Ω |N(x)|.

Lemma

Consider a Markov chain where for all x and y with y 6= x ,
Px ,y = 1

M if y ∈ N(x), and Px ,y = 0 otherwise. Also,

Px ,x = 1− |N(x)|
M . If this chain is irreducible and aperiodic, then

the stationary distribution is the uniform distribution.

Proof.

We show that the chain is time-reversible.
For any x 6= y , if πx = πy , then

πxPx ,y = πyPy ,x ,

since Px ,y = Py ,x = 1/M. It follows that the uniform distribution
πx = 1/|Ω| is the stationary distribution.



The Metropolis Algorithm

Assuming that we want to sample with non-uniform distribution.
For example, we want the probability of an independent set of size
i to be proportional to λi .
Consider a Markov chain on independent sets in G = (V ,E ):

1 X0 is an arbitrary independent set in G .

2 To compute Xi+1:

1 Choose a vertex v uniformly at random from V .
2 If v ∈ Xi then set Xi+1 = Xi \ {v} with probability min(1, 1/λ);
3 if v 6∈ Xi , and adding v to Xi still gives an independent set,

then set Xi+1 = Xi ∪ {v} with probability min(1, λ);
4 otherwise, set Xi+1 = Xi .



Lemma

For a finite state space Ω, let M ≥ maxx∈Ω |N(x)|. For all x ∈ Ω,
let πx > 0 be the desired probability of state x in the stationary
distribution. Consider a Markov chain where for all x and y with
y 6= x ,

Px ,y =
1

M
min

(
1,
πy
πx

)
if y ∈ N(x), and Px ,y = 0 otherwise. Further,
Px ,x = 1−

∑
y 6=x Px ,y . Then if this chain is irreducible and

aperiodic, the stationary distribution is given by the probabilities
πx .



Proof.

We show the chain is time-reversible. For any x 6= y , if πx ≤ πy ,
then Px ,y = 1 and Py ,x = πx/πy . It follows that πxPx ,y = πyPy ,x .
Similarly, if πx > πy , then Px ,y = πy/πx and Py ,x = 1, and it
follows that πxPx ,y = πyPy ,x .

Note that the Metropolis Algorithm only needs the ratios πx/πy ’s.
In our construction, the probability of an independent set of size i
is λi/B for B =

∑
x λ

size(x) although we may not know B.



Coupling and MC Convergance

• An Ergodic Markov Chain converges to its stationary
distribution.

• How long do we need to run the chain until we sample a state
in almost the stationary distribution?

• How do we measure distance between distributions?

• How do we analyze speed of convergence?



Variation Distance

Definition

The variation distance between two distributions D1 and D2 on a
countably finite state space S is given by

||D1 − D2|| =
1

2

∑
x∈S
|D1(x)− D2(x)|.

��
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0 1 2 3 4

D1

D2

1/10

2/10

3/10

4/10

Figure: The total area shaded by upward diagonal lines must equal the
total areas shaded by downward diagonal lines, and the variation distance
equals one of these two areas.



Lemma

For any A ⊆ S , let Di (A) =
∑

x∈ADi (x), for i = 1, 2. Then,

||D1 − D2|| = max
A⊆S
|D1(A)− D2(A)|.

Let S+ ⊆ S be the set of states such that D1(x) ≥ D2(x), and
S− ⊆ S be the set of states such that D2(x) > D1(x).
Clearly

max
A⊆S

D1(A)− D2(A) = D1(S+)− D2(S+),

and
max
A⊆S

D2(A)− D1(A) = D2(S−)− D1(S−).

But since D1(S) = D2(S) = 1, we have

D1(S+) + D1(S−) = D2(S+) + D2(S−) = 1,

which implies that

D1(S+)− D2(S+) = D2(S−)− D1(S−).



max
A⊆S
|D1(A)−D2(A)| = |D1(S+)−D2(S+)| = |D1(S−)−D2(S−)|.

and

|D1(S+)− D2(S+)|+ |D1(S−)− D2(S−)| =
∑
x∈S
|D1(x)− D2(x)|

= 2||D1 − D2||,

we have
max
A⊆S
|D1(A)− D2(A)| = ||D1 − D2||,



Rate of Convergence

Definition

Let π be the stationary distribution of a Markov chain with state
space S . Let ptx represent the distribution of the state of the chain
starting at state x after t steps. We define

∆x(t) = ||ptx − π|| ; ∆(t) = max
x∈S

∆x(t).

That is, ∆x(t) is the variation distance between the stationary
distribution and ptx , and ∆(t) is the maximum of these values over
all states x .
We also define

τx(ε) = min{t : ∆x(t) ≤ ε} ; τ(ε) = max
x∈S

τx(ε).

That is, τx(ε) is the first step t at which the variation distance
between ptx and the stationary distribution is less than ε, and τ(ε)
is the maximum of these values over all states x .



Example: Shuffling Cards

Markov chain:

• States: orders of the deck of cards.

• Transitions: at each step choose one card, uniformly at
random, and move to the top.

• Uniform stationary distribution (not time reversal, but fully
symmetric).

How many transitions until the process is mixing?



Coupling

Definition

A coupling of a Markov chain M with state space S is a Markov
chain Zt = (Xt ,Yt) on the state space S × S such that

Pr(Xt+1 = x ′|Zt = (x , y)) = Pr(Xt+1 = x ′|Xt = x);

Pr(Yt+1 = y ′|Zt = (x , y)) = Pr(Yt+1 = y ′|Yt = y).



The Coupling Lemma

Lemma (Coupling Lemma)

Let Zt = (Xt ,Yt) be a coupling for a Markov chain M on a state
space S . Suppose that there exists a T so that for every x , y ∈ S ,

Pr(XT 6= YT | X0 = x ,Y0 = y) ≤ ε.

Then
τ(ε) ≤ T .

That is, for any initial state, the variation distance between the
distribution of the state of the chain after T steps and the
stationary distribution is at most ε.



Proof.

Consider the coupling when Y0 is chosen according to the
stationary distribution and X0 takes on any arbitrary value. For the
given T and ε, and for any A ⊆ S

Pr(XT ∈ A) ≥ Pr((XT = YT ) ∩ (YT ∈ A))

= 1− Pr((XT 6= YT ) ∪ (YT /∈ A))

≥ (1− Pr(YT /∈ A))− Pr(XT 6= YT )

≥ Pr(YT ∈ A)− ε
= π(A)− ε.

Similarly,
Pr(XT 6∈ A) ≥ π(S \ A)− ε

or
Pr(XT ∈ A) ≤ π(A) + ε

It follows that
max
x ,A
|pTx (A)− π(A)| ≤ ε,

.



Example: Shuffling Cards

• Markov chain:
• States: orders of the deck of cards.
• Transitions: at each step choose one card, uniformly at

random, and move to the top.
• Uniform stationary distribution

• Given two such chains: Xt and Yt we define the coupling:
• The first chain chooses a card uniformly at random and move

it to the top.
• The second chain move the same card (it may be in a different

location) to the top.

• The probability that any card was not chosen by the first
chain in n log n + cn steps is e−c .

• After n log(n/ε) steps the variation distance between our
chain and the uniform distribution is bounded by ε.

τ(ε) ≤ n ln(n/ε).



Example: Random Walks on the Hypercube

• Consider n-cube, with N = 2n nodes., Let x̄ = (x1, . . . , xn) be
the binary representation of x . Nodes x and y are connected
by an edge iff x̄ and ȳ differ in exactly one bit.

• Markov chain on the n-cube: at each step, choose a
coordinate i uniformly at random from [1, n], and set xi to 0
with probability 1/2 and 1 with probability 1/2.

• Coupling: both chains choose the same bit and give it the
same value.

• The chains couple when all bits have been chosen.

• By the Coupling Lemma the mixing time satisfies

τ(ε) ≤ n ln(nε−1).



Example: Sampling Independent Sets of a Given
Size

Consider a Markov chain whose states are independent sets of size
k in a graph G = (V ,E ):

1 X0 is an arbitrary independent set of size k in G .

2 To compute Xi+1:

1 Choose uniformly at random v ∈ Xt and w ∈ V .
2 if w 6∈ Xi , and (Xt − {v}) ∪ {w} is an independent set, then

Xt+1 = (Xt − {v}) ∪ {w}
3 otherwise, Xi+1 = Xi .

• If the chain is irreducible

• The chain is aperiodic

• For y 6= x , Px ,y = 1/|V | or 0.

• Uniform stationary distribution



Irreducible

Lemma

Let G be a graph on n vertices with maximum degree ≤ ∆. For
k ≤ n/(3∆ + 3), the chain is irreducible.

Proof.

Let N(I ) be the set of neighbors of nodes in I .
Let I1 and I2 be two independent sets of size k . The two
independent sets and the neighbors of their nodes cover no more
than 2k(∆ + 1) nodes. Thus, there is a third independent set J,
such that

(J ∪ N(J)) ∩ (I1 ∪ I2 ∪ N(I1) ∪ N(I2)) = ∅.

.
The chain can move from I1 to I2 by first moving to J and then to
I2.



Convergence Time

Theorem

Let G be a graph on n vertices with maximum degree ≤ ∆. For
k ≤ n/(3∆ + 3),

τ(ε) ≤ kn ln ε−1.

Coupling:

1 X0 and Y0 are arbitrary independent sets of size k in G .

2 To compute Xi+1 and Yt+1:

1 Choose uniformly at random v ∈ Xt and w ∈ V .
2 if w 6∈ Xi , and (Xt − {v}) ∪ {w} is an independent set, then

Xt+1 = (Xt − {v}) ∪ {w}, otherwise, Xi+1 = Xi .
3 If v 6∈ Yt choose v ′ uniformly at random from Yt − Xt , else

v ′ = v .
4 if w 6∈ Yi , and (Yt − {v ′}) ∪ {w} is an independent set, then

Yt+1 = (Yt − {v ′}) ∪ {w}, otherwise, Yt+1 = Yt .



Let dt = |Xt − Yt |,
• |dt+1 − dt | ≤ 1.

• dt+1 = dt + 1 iff v ∈ Yt and there is move in only one chain.
Either w or its neighbor must be in (Xt − Yt) ∪ (Yt − Xt)

Pr(dt+1 = dt + 1) ≤ k − dt
k

2dt(∆ + 1)

n
.

• dt+1 = dt − 1 if v 6∈ Yt and w and its neighbors are not in
Xt ∪ Yt − {v , v ′}. |Xt ∪ Yt | = k + dt

Pr(dt+1 = dt − 1) ≥ dt
k

n − (k + dt − 2)(∆ + 1)

n
.



We have for dt > 0,

E[dt+1 | dt ] = dt + Pr(dt+1 = dt + 1)− Pr(dt+1 = dt − 1)

≤ dt +
k − dt

k

2dt(∆ + 1)

n
− dt

k

n − (k + dt − 2)(∆ + 1)

n

= dt

(
1− n − (3k − dt − 2)(∆ + 1)

kn

)
≤ dt

(
1− n − (3k − 3)(∆ + 1)

kn

)
.

Once dt = 0, the two chains follow the same path, thus
E[dt+1 | dt = 0] = 0.

E[dt+1] = E[E[dt+1 | dt ]] ≤ E[dt ]

(
1− (n − 3k + 3)(∆ + 1)

kn

)
.

E[dt ] ≤ d0

(
1− n − (3k − 3)(∆ + 1)

kn

)t

.



E[dt+1] = E[E[dt+1 | dt ]] ≤ E[dt ]

(
1− (n − 3k + 3)(∆ + 1)

kn

)
.

Since d0 ≤ k , and dt is a non-negative integer,

Pr(dt ≥ 1) ≤ E[dt ] ≤ k

(
1− n − (3k − 3)(∆ + 1)

kn

)t

≤ e−t
n−(3k−3)(∆+1)

kn .

For k ≤ n/(3∆ + 3),

τ(ε) ≤ kn ln ε−1

n − (3k − 3)(∆ + 1)
.

In particular, when k and ∆ are constants, τ(ε) = O(ln ε−1).



Approximately Sampling Proper Colorings

• A proper vertex coloring of a graph gives each vertex v a color
from a set C = {1, 2, . . . , c} such that the two endpoints of
every edge are colored by two different colors.

• Any graph with maximum degree ∆ can be colored properly
with c = ∆ + 1 colors.

• We are interested in sampling almost uniformly at random a
proper coloring of a graph with a fixed c ≥ ∆ + 1 colors.



MCMC for Sampling Proper Coloring

Markov chain whose states are proper coloring of a graph
G = (V ,E ) with colors in C :

1 X0 is an arbitrary proper coloring of G .

2 To compute Xi+1:

1 Choose uniformly at random v ∈ V and b ∈ C .
2 if coloring v with b gives a proper coloring then change the

color of v to b to obtain Xt+1

3 otherwise, Xi+1 = Xi .

• The chain is irreducible if c ≥ 2∆ + 1

• The chain is aperiodic

• Uniform stationary distribution



Easy Result

Theorem

For any graph with n vertices and maximum degree ∆, the mixing
time of the graph-coloring Markov chain is

τ(ε) ≤
⌈

nc

c − 4∆
ln(n/ε)

⌉
,

as long as c ≥ 4∆ + 1.

Simple coupling: use the same choice of v and c in both chains.



Proof

• Dt = the set of vertices that have different colors in the two
chains at time t,

• dt = |Dt | can change by at most ±1 in each iteration.

• The probability that v ∈ Dt and b is not used by the ∆
neighbors of v in both chains is

Pr(dt+1 = dt − 1 | dt > 0) ≥ dt
n

c − 2∆

c
.

• The probability that v ∈ V − Dt and it is recolored in only
one chain is bounded by the probability that v has a neighbor
w ∈ Dt , and we choose one of the colors used by w in the two
chains.

Pr(dt+1 = dt + 1) ≤ dt∆

n

2

c
.



E[dt+1 | dt ] = dt + Pr(dt+1 = dt + 1)− Pr(dt+1 = dt − 1)

≤ dt +
dt
n

2∆

c
− dt

n

c − 2∆

c

≤ dt

(
1− c − 4∆

nc

)
,

which also holds if dt = 0.
Using the conditional expectation equality, we have

E[dt+1] = E[E[dt+1 | dt ]] ≤ E[dt ]

(
1− c − 4∆

nc

)
.



By induction, we find

E[dt ] ≤ d0

(
1− c − 4∆

nc

)t

.

Since d0 ≤ n, and dt is a non-negative integer,

Pr(dt ≥ 1) ≤ E[dt ] ≤ n

(
1− c − 4∆

nc

)t

≤ ne−t(c−4∆)/nc .

Hence the variation distance is at most ε after

t =

⌈
nc

c − 4∆
ln(n/ε)

⌉
steps.



Stronger result

Theorem

Given an n vertex graph with maximum degree ∆, the mixing time
of the graph-coloring Markov chain is

τ(ε) ≤
⌈
n(c −∆)

c − 2∆
ln(n/ε)

⌉
,

as long as c ≥ 2∆ + 1.



Better Coupling

• Dt - vertices with different colors in the two chains.

• At = V − Dt - vertices with the same colors in both chains.

• For v ∈ At let d ′(v) be the number of neighbors of v in Dt

• For v ∈ Dt let d ′(v) be the number of neighbors of v in At

• ∑
v∈Dt

d ′(v) =
∑

v∈At
d ′(v) = m′

Pr(dt+1 = dt − 1 | dt > 0) ≥ 1

n

∑
v∈Dt

c − 2∆ + d ′(v)

c

=
1

cn

(
(c − 2∆)dt + m′

)
.



• We want to decrease the probability that a vertex v ∈ At is
re-colored in just one chain.

• When v ∈ At let S1(v) be the set of colors of neighbors of v
in the first chain and not in the second chain, S2(v) in the
second chain and not the first.

• When choosing the color in the second chain couple S1(v)
and S2(v) as much as possible, so when the first chain uses
c ∈ S1(v) the second chain uses c ′ ∈ S2(v).

• The number of coloring that increase dt is bounded by
max(|S1(v)|, |S2(v)|) ≤ d ′(v).

Pr(dt+1 = dt + 1 | dt > 0) ≤ 1

n

∑
v∈At

d ′(v)

c
=

m′

cn



E [dt+1 | dt ] ≤ dt +
m′

cn
− 1

cn

(
(c − 2∆)dt + m′

)
= dt

(
1− c − 2∆

nc

)
.

Pr(dt ≥ 1) ≤ E[dt ] ≤ n

(
1− c − 2∆

nc

)t

≤ ne−t(c−2∆)/nc ,

and the variation distance is at most ε after

τ(ε) =

⌈
nc

c − 2∆
ln(n/ε)

⌉
steps.


