CS155/254: Probabilistic Methods in Computer Science

Eli Upfal
Eli_Upfal@brown.edu
Office: 319

https://cs.brown.edu/courses/csci1550/
Why Probability in Computing?

- Almost any advance computing application today has some randomization/statistical/machine learning components:
 - Efficient data structures (hashing)
 - Network security
 - Cryptography
 - Web search and Web advertising
 - Spam filtering
 - Social network tools
 - Recommendation systems: Amazon, Netflix,..
 - Communication protocols
 - Computational finance
 - System biology
 - DNA sequencing and analysis
 - Data mining
Why Probability and Computing

• Randomized algorithms - random steps help! - cryptography and security, fast algorithms, simulations

• Probabilistic analysis of algorithms - Why "hard to solve" problems in theory are often not that hard in practice.

• Statistical inference - Machine learning, data mining...

All are based on the same (mostly discrete) probability theory - but with new specialized methods and techniques
Why Probability and Computing

A typical probability theory statement:

Theorem (The Central Limit Theorem)

Let X_1, \ldots, X_n be independent identically distributed random variables with common mean μ and variance σ^2. Then

$$
\lim_{n \to \infty} \Pr\left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu}{\sigma/\sqrt{n}} \leq z \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt.
$$

A typical CS probabilistic tool:

Theorem (Chernoff Bound)

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $\Pr(X_i = 1) = p$, then

$$
\Pr\left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq (1 + \delta)p \right) \leq e^{-np\delta^2/3}.
$$
Course Details - Main Topics

1. QUICK review of basic probability theory through analysis of randomized algorithms.
2. Large deviation bounds: Chernoff and Hoeffding bounds
3. Martingale (in discrete space)
4. Theory of statistical learning, PAC learning, VC-dimension
5. Monte Carlo methods, Metropolis algorithm, ...
7. The probabilistic method
8. ...

This course emphasize rigorous mathematical approach, mathematical proofs, and analysis.
QUICK review of basic probability theory through analysis of randomized algorithms.

- Randomized algorithm for computing a min-cut in a graph
- Randomized algorithm for finding the k-smallest element in a set.
- Review of events, probability space, conditional probability, independence, expectation, ...
1. QUICK review of basic probability theory through analysis of randomized algorithms.

2. Large deviation bounds: Chernoff and Hoeffding bounds
 How many independent samples are need for estimating a probability or an expectation?
Course Details - Main Topics

1. QUICK review of basic probability theory through analysis of randomized algorithms.

2. Large deviation bounds: Chernoff and Hoeffding bounds

3. Martingale (in discrete space)
 Can we remove the independence assumption?
Course Details - Main Topics

1. QUICK review of basic probability theory through analysis of randomized algorithms.
2. Large deviation bounds: Chernoff and Hoeffding bounds
3. Martingale (in discrete space)
4. Theory of statistical learning, PAC learning, VC-dimension
 - What is learnable from random examples? What is not learnable?
 - How large training set do we need?
 - Can we use one sample to answer infinite many questions?
Course Details - Main Topics

1. QUICK review of basic probability theory through analysis of randomized algorithms.

2. Large deviation bounds: Chernoff and Hoeffding bounds

3. Martingale (in discrete space)

4. Theory of statistical learning, PAC learning, VC-dimension

5. Monte Carlo methods, Metropolis algorithm, ...

 - What can be learned from simulations?
 - How many needles are in the haystack?
Course Details - Main Topics

1. QUICK review of basic probability theory through analysis of randomized algorithms.
2. Large deviation bounds: Chernoff and Hoeffding bounds
3. Martingale (in discrete space)
4. Theory of statistical learning, PAC learning, VC-dimension
5. Monte Carlo methods, Metropolis algorithm, ...
7. The probabilistic method
 - How to prove a deterministic statement using a probabilistic argument?
 - How is it useful for algorithm design?
Course Details - Main Topics

1. QUICK review of basic probability theory through analysis of randomized algorithms.
2. Large deviation bounds: Chernoff and Hoeffding bounds
3. Martingale (in discrete space)
4. Theory of statistical learning, PAC learning, VC-dimension
5. Monte Carlo methods, Metropolis algorithm, ...
7. The probabilistic method
8. ...

This course emphasize rigorous mathematical approach, mathematical proofs, and analysis.
Course Details

- **Pre-requisite:** CS145 or equivalent (first three chapters in the course textbook).

- **Course textbook:**

![Probability and Computing](image1.png)

![Probability and Computing](image2.png)
Homeworks, Midterm and Final:

• Weekly assignments.
 • Typeset in Latex (or readable like typed) - template on the website
 • Concise and correct proofs.
 • Can work together - but write in your own words.
 • Graded only if submitted on time.

• Midterm and final: take home exams, absolute no collaboration, cheaters get C.
Course Rules:

- You don’t need to attend class - but you cannot ask the instructor/TA’s to repeat information given in class.
- You don’t need to submit homework - but homework grades can improve your course grade.
- \(\text{CourseGrade} = 0.4 \times \text{Final} + 0.3 \times \max[ext{Midterm, Final}] + 0.3 \times \max[ext{Hw, Final}] \)
 \(\text{Hw} = \) Average of the best 6 homework grades.
- No accommodation without Dean’s note.
- HW-0, not graded, out today. **DON’T** take this course if you don’t want to face these type of exercises every week.
Questions?
Testing Polynomial Identity

Test if \((5x^2 + 3)^4(3x^4 + 3x^2) = (x + 1)^5(4x - 17)^5\), or in general whether a polynomial \(F(x) \equiv 0\).

We can transform to canonical form \(\sum_{0 \leq i \leq d} a_i X^i\) and check that all coefficients are 0 – hard work.

Instead, choose a random number \(r \in [0, 100d]\) and compute \(F(r)\). If \(F(r) \neq 0\) return \(F(x) \neq 0\) else return \(F(x) \equiv 0\).

If \(F(r) \neq 0\), the algorithm gives the correct answer. What is the probability that \(F(r) = 0\) but \(F(x) \neq 0\)?

The fundamental theorem of algebra: a polynomial of degree \(d\) has no more than \(d\) roots.

\[
\Pr(\text{algorithm is wrong}) = \Pr(F(r) = 0 \text{ AND } F(x) \neq 0) \leq \frac{d}{100d}
\]

What happened if we repeat the algorithm?
Min-Cut

A minimum set of edges that disconnects the graph.

Source: *On the history of the transportation and maximum flow problems.*

Min-Cut Algorithm

Input: An \(n \)-node graph \(G \).

Output: A minimal set of edges that disconnects the graph.

1. **Repeat** \(n - 2 \) times:
 1. Pick an edge uniformly at random.
 2. Contract the two vertices connected by that edge, eliminate all edges connecting the two vertices.

2. Output the set of edges connecting the two remaining vertices.

How good is this algorithm?
Min-Cut Algorithm

Input: An \(n \)-node graph \(G \).
Output: A minimal set of edges that disconnects the graph.

1. Repeat \(n - 2 \) times:
 1. Pick an edge uniformly at random.
 2. Contract the two vertices connected by that edge, eliminate all edges connecting the two vertices.

2. Output the set of edges connecting the two remaining vertices.

Theorem

1. The algorithm outputs a min-cut edge-set with probability
 \[
 \geq \frac{2}{n(n-1)}.
 \]

2. The smallest output in \(O(n^2 \log n) \) iterations of the algorithm gives a correct answer with probability
 \[
 1 - \frac{1}{n^2}.
 \]
Probability Space

Definition

A **probability space** has three components:

1. A **sample space** Ω, which is the set of all possible outcomes of the random process modeled by the probability space;

2. A family of sets \mathcal{F} representing the allowable **events**, where each set in \mathcal{F} is a subset of the sample space Ω;

3. A **probability function** $\Pr : \mathcal{F} \rightarrow [0, 1]$ defining a measure.

In a **discrete** probability an element of Ω is a **simple** event, and $\mathcal{F} = 2^\Omega$.
Probability Function

Definition

A probability function is any function \(\Pr : \mathcal{F} \to \mathbb{R} \) that satisfies the following conditions:

1. For any event \(E \), \(0 \leq \Pr(E) \leq 1 \);
2. \(\Pr(\Omega) = 1 \);
3. For any finite or countably infinite sequence of pairwise mutually disjoint events \(E_1, E_2, E_3, \ldots \)

\[
\Pr \left(\bigcup_{i \geq 1} E_i \right) = \sum_{i \geq 1} \Pr(E_i).
\]

The probability of an event is the sum of the probabilities of its simple events.
Min-Cut Algorithm

Input: An n-node graph G.
Output: A minimal set of edges that disconnects the graph.

1. **Repeat $n−2$ times:**
 1. Pick an edge uniformly at random.
 2. Contract the two vertices connected by that edge, eliminate all edges connecting the two vertices.

2. **Output the set of edges connecting the two remaining vertices.**

Theorem

The algorithm outputs a min-cut edge-set with probability

$\geq \frac{2}{n(n-1)}$.

What’s the probability space? The space changes each step.
Definition

The conditional probability that event E_1 occurs given that event E_2 occurs is

$$\Pr(E_1 \mid E_2) = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_2)}.$$

The conditional probability is only well-defined if $\Pr(E_2) > 0$.

By conditioning on E_2 we restrict the sample space to the set E_2. Thus we are interested in $\Pr(E_1 \cap E_2)$ “normalized” by $\Pr(E_2)$.
Assume that the graph has a min-cut set of k edges. We compute the probability of finding one such set C.

Lemma

If no edge of C was contracted, no edge of C was eliminated.

Proof.

Let X and Y be the two set of vertices cut by C. If the contracting edge connects two vertices in X (res. Y), then all its parallel edges also connect vertices in X (res. Y).
Let $E_i = "the edge contracted in iteration \, i \, is \, not \, in \, C."
Let $F_i = \cap_{j=1}^{i} E_j = "no \, edge \, of \, C \, was \, contracted \, in \, the \, first \, i \, iterations".
We need to compute $Pr(F_{n-2})$
Since the minimum cut-set has k edges, all vertices have degree $\geq k$, and the graph has $\geq nk/2$ edges.

There are at least $nk/2$ edges in the graph, k edges are in C. Thus, $Pr(E_1) = Pr(F_1) \geq 1 - \frac{2k}{nk} = 1 - \frac{2}{n}$.

Conditioning on E_1, after the first vertex contraction we are left with an $n-1$ node graph, with minimum cut set, and minimum degree $\geq k$. The new graph has at least $k(n-1)/2$ edges, thus $Pr(E_2 \mid F_1) \geq 1 - \frac{k}{k(n-1)/2} \geq 1 - \frac{2}{n-1}$.

Similarly, $Pr(E_i \mid F_{i-1}) \geq 1 - \frac{k}{k(n-i+1)/2} = 1 - \frac{2}{n-i+1}$.

We need to compute $Pr(F_{n-2}) = Pr(\cap_{j=1}^{n-2} E_j)$.
Conditional Probabilities

Definition

The conditional probability that event E_1 occurs given that event E_2 occurs is

$$
Pr(E_1 \mid E_2) = \frac{Pr(E_1 \cap E_2)}{Pr(E_2)}.
$$

The conditional probability is only well-defined if $Pr(E_2) > 0$.

By conditioning on E_2 we restrict the sample space to the set E_2. Thus we are interested in $Pr(E_1 \cap E_2)$ “normalized” by $Pr(E_2)$.
Theorem (Law of Total Probability)

Let E_1, E_2, \ldots, E_n be mutually disjoint events in the sample space Ω, and $\bigcup_{i=1}^n E_i = \Omega$, then

$$
\Pr(B) = \sum_{i=1}^n \Pr(B \cap E_i) = \sum_{i=1}^n \Pr(B \mid E_i) \Pr(E_i).
$$

Proof.

Since the events $E_i, \ i = 1, \ldots, n$ are disjoint and cover the entire sample space Ω,

$$
\Pr(B) = \sum_{i=1}^n \Pr(B \cap E_i) = \sum_{i=1}^n \Pr(B \mid E_i) \Pr(E_i).
$$
Bayes’ Law

Theorem (Bayes’ Law)

Assume that E_1, E_2, \ldots, E_n are mutually disjoint sets such that $\bigcup_{i=1}^{n} E_i = \Omega$, then

$$
\Pr(E_j \mid B) = \frac{\Pr(E_j \cap B)}{\Pr(B)} = \frac{\Pr(B \mid E_j) \Pr(E_j)}{\sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i)}.
$$
Useful identities:

\[
Pr(\mathcal{A} \mid \mathcal{B}) = \frac{Pr(\mathcal{A} \cap \mathcal{B})}{Pr(\mathcal{B})}
\]

\[
Pr(\mathcal{A} \cap \mathcal{B}) = Pr(\mathcal{A} \mid \mathcal{B})Pr(\mathcal{B})
\]

\[
Pr(\mathcal{A} \cap \mathcal{B} \cap \mathcal{C}) = Pr(\mathcal{A} \mid \mathcal{B} \cap \mathcal{C})Pr(\mathcal{B} \cap \mathcal{C})
\]

\[
= Pr(\mathcal{A} \mid \mathcal{B} \cap \mathcal{C})Pr(\mathcal{B} \mid \mathcal{C})Pr(\mathcal{C})
\]

Let \(A_1, \ldots, A_n\) be a sequence of events. Let \(E_i = \bigcap_{j=1}^{i} A_i\)

\[
Pr(\mathcal{E}_n) = Pr(A_n \mid \mathcal{E}_{n-1})Pr(\mathcal{E}_{n-1}) = \\
Pr(A_n \mid \mathcal{E}_{n-1})Pr(A_{n-1} \mid \mathcal{E}_{n-2}) \ldots P(A_2 \mid \mathcal{E}_1)Pr(A_1)
\]
We need to compute

\[Pr(F_{n-2}) = Pr(\cap_{j=1}^{n-2} E_j) \]

We have

\[Pr(E_1) = Pr(F_1) \geq 1 - \frac{2k}{nk} = 1 - \frac{2}{n} \]

and

\[Pr(E_i \mid F_{i-1}) \geq 1 - \frac{k}{k(n - i + 1)/2} = 1 - \frac{2}{n - i + 1}. \]

\[Pr(F_{n-2}) = Pr(E_{n-2} \cap F_{n-3}) = Pr(E_{n-2} \mid F_{n-3}) Pr(F_{n-3}) = \]

\[Pr(E_{n-2} \mid F_{n-3}) Pr(E_{n-3} \mid F_{n-4}) \ldots Pr(E_2 \mid F_1) Pr(F_1) = \]

\[Pr(F_1) \prod_{j=2}^{n-2} Pr(E_j \mid F_{j-1}) \]
The probability that the algorithm computes the minimum cut-set is

\[
Pr(F_{n-2}) = Pr(\cap_{j=1}^{n-2} E_j) = Pr(F_1) \prod_{j=2}^{n-2} Pr(E_j | F_{j-1})
\]

\[
\geq \prod_{i=1}^{n-2} \left(1 - \frac{2}{n - i + 1} \right) = \prod_{i=1}^{n-2} \left(\frac{n - i - 1}{n - i + 1} \right)
\]

\[
= \left(\frac{n - 2}{n} \right) \left(\frac{n - 3}{n - 1} \right) \left(\frac{n - 4}{n - 2} \right) \cdots
\]

\[
= \frac{2}{n(n - 1)}.
\]
Theorem

Assume that we run the randomized min-cut algorithm \(n(n - 1) \log n \) times and output the minimum size cut-set found in all the iterations. The probability that the output is not a min-cut set is bounded by \(\frac{1}{n^2} \).

Lemma

Vertex contraction does not reduce the size of the min-cut set. Every cut set in the new graph is a cut set in the original graph.

Proof.

The algorithm has a one side error: the output is never smaller than the min-cut value.
\[
\left(1 - \frac{2}{n(n - 1)}\right)^{n(n-1)\log n} \leq e^{-2\log n} = \frac{1}{n^2}.
\]

The Taylor series expansion of \(e^{-x}\) gives

\[
e^{-x} = 1 - x + \frac{x^2}{2!} - \ldots.
\]

Thus, for \(x < 1\),

\[
1 - x \leq e^{-x}.
\]
Theorem

1. The algorithm outputs a min-cut edge set with probability
 \[\geq \frac{2}{n(n-1)}. \]

2. The smallest output in \(O(n^2 \log n) \) iterations of the algorithm gives a correct answer with probability \(1 - 1/n^2 \).
Independent Events

Definition

Two events E and F are **independent** if and only if

$$\Pr(E \cap F) = \Pr(E) \cdot \Pr(F).$$

More generally, events E_1, E_2, \ldots, E_k are mutually independent if and only if for any subset $I \subseteq [1, k]$,

$$\Pr\left(\bigcap_{i \in I} E_i\right) = \prod_{i \in I} \Pr(E_i).$$