CS148 - Building Intelligent Robots
Lecture 6: Learning for Robotics

Instructor: Chad Jenkins (cjenkins)
Administrivia: good news

• No class next Tuesday 10/12
 – you can show up, but I will not be here

Rudy, you are like a robotics teacher out of the country

A robotics teacher out of the country?

Yeah, no class!
Administrivia: bad news

• Someone left the Lego lab open and unattended yesterday!!

• This is a huge problem and can lead to disaster for the class
 – if the kits were to disappear, how would you implement the labs and projects

• This situation must be taken seriously
 – thus, I will deduct a 1% from the final grade of ALL students in the standard track if lab is left open and unattended again
 – next infraction will be 2%, then 4%, 8%,
Machine learning (from Wikipedia)

• Machine learning is an area of artificial intelligence involving developing techniques to allow computers to "learn".
 – More specifically, machine learning is a method for creating computer programs by the analysis of data sets, rather than the intuition of engineers.
 – Machine learning overlaps heavily with statistics, since both fields study the analysis of data.
 – Applications: medical diagnosis, detecting credit card fraud, stock market analysis, classifying DNA sequences, speech and handwriting recognition, game playing and robot locomotion.
Machine learning taxonomy

- Machine learning groups into the following categories:
 - supervised learning: an algorithm generates a function that maps inputs to desired outputs
 - given data for x and y, find $f(x) = y$
 - classification, regression
 - unsupervised learning: an algorithm generates a model for a set of inputs
 - given x, find models underlying x
 - feature extraction, density estimation
 - reinforcement learning: an algorithm learns a policy of how to act given an observation of the world
 - find a policy u such that expected outcomes $o = u(x, \text{actions})$
 - learning to learn: an algorithm learns its own inductive bias based on previous experience.
Supervised learning: regression

- **Ask N students:**
 - x: # of CS classes taken
 - y: typical Mountain Dew consumption

- **Supervised problem:**
 - function of MD consump. w.r.t. CS background
 - $f(x) = y$
Supervised learning: regression

- **Ask N students:**
 - x: # of CS classes taken
 - y: typical Mountain Dew consumption

- **Supervised problem:**
 - function of MD consump. w.r.t. CS background
 - $f(x) = y$

- **Linear regression**
 - fit a line: $f(x) = ax + b = y$
Unsupervised learning: dimension reduction

• Ask N students:
 – x1: # of CS classes taken
 – x2: typical Mountain Dew consumption

• Unsupervised problem:
 – find underlying coordinate system

• Principal Components Analysis
 – find linear system that best expresses data
Examples for robotics

• **Inverse dynamics**
 – \(f(\text{desired states}) = \text{control commands} \)
 – collect control commands and states from robot teleoperation

• **Inverse kinematics**
 – \(f(\text{endeffector position}) = \text{joint angles} \)
Unsupervised learning: clustering

- **Ask N CS students:**
 - x_1: # of systems classes taken
 - x_2: # of AI classes taken
 - x_3: # of theory classes taken

- **Unsupervised problem:**
 - find categories of students
 - sets of students C_1, C_2, etc.
Unsupervised learning: clustering

• Ask N CS students:
 – x_1: # of systems classes taken
 – x_2: # of AI classes taken
 – x_3: # of theory classes taken
 – 3 dimensional data

• Unsupervised problem:
 – find categories of students
 • sets of students C_1, C_2, etc.

• Clustering
 – estimates cluster associations

• K-means clustering
 – assume K clusters with initial locations
 – find cluster nearest to each point
 – move cluster to centroid
Supervised learning: classification

- From clustering we know:
 - \(x \): classes taken
 - \(y \): category (AI, systems, ...)

![Graph showing classification in AI, Systems, and Theory categories.](image-url)
Supervised learning: classification

• From clustering we know:
 – x: classes taken
 – y: category (AI, systems, ...)

• Find $f(x) = y$
 – decision boundaries
 Supervised learning: classification

• From clustering we know:
 – x: classes taken
 – y: category (AI, systems, ...)

• Find $f(x) = y$
 – decision boundaries

• Classify new point x_{new}
Supervised learning: classification

• From clustering we know:
 – x: classes taken
 – y: category (AI, systems, ...)

• Find $f(x) = y$
 – decision boundaries

• Classify new point x_{new}
 – using decision boundaries
Examples for robotics

• Behavior arbitration
 – \(f(\text{sensor readings}) = \text{behavior selection} \)

• Landmarking for robot navigation
 – \(f(\text{sensor readings}) = \text{landmark category} \)

• Neural navigation of mobile robots
 – \(f(\text{brain readings}) = \text{controller states} \)
Reinforcement learning (from Wikipedia)

- A class of problems in machine learning which postulate an agent exploring an environment in which the agent perceives its current state and takes actions.

- The environment, in return, provides a reward (which can be positive or negative).

- Reinforcement learning algorithms attempt to find a policy for maximizing cumulative reward for the agent over the course of the problem.
Reinforcement learning (from Wikipedia)

- RL differs from supervised learning in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected.

- RL focuses on on-line performance
 - balance between
 - exploration (of uncharted territory)
 - exploitation (of current knowledge).
Formal RL model

• A RL model consists of
 – a discrete set of S states
 • models describing the robot’s environment
 – a discrete set of A actions
 • actions the robot can take to change state
 – a set of scalar reinforcement signals R
 • functions evaluating short-term and long-term reward
 – a robot control policy P
 • given state s at time t, selects action a to maximize rewards r
 • what we are trying to learn
Formal RL model

• A RL model consists of
 – a discrete set of S states
 • models describing the robot’s environment
 – a discrete set of A actions
 • actions the robot can take to change state
 – a set of scalar reinforcement signals R
 • functions evaluating short-term and long-term reward
 – a robot control policy P
 • given state s at time t, selects action a to maximize rewards r
 • what we are trying to learn

Does anyone see a problem with this?
Issues for reinforcement learning

• Estimation of states and state transitions

• Partial observability
 – robot observes noisy or incomplete information about the world

• Discretization of states
 – make assumptions or use domain knowledge

• Discretization of actions/behaviors
 – hand coded robot controllers or
 – learn them automatically (this is my research)
Approaches to reinforcement learning

• Find policies as the utility or value of actions with respect to outcomes

• Two general approaches to learning policies
 – Search
 • search over the space of actions to find their utility
 • techniques: breadth-first, depth-first, genetic algorithms
 – Statistical modeling
 • probabilistically model the utility of taking actions
 • use statistical techniques with dynamic programming
 • techniques: Markov Decision Processes
Genetic algorithm procedure

- Randomly generate “DNA” of an initial population $M(0)$
 - an individual has a genotype that encodes a control policy

- Compute and save the fitness $u(m)$ for each individual m in the current population $M(t)$
 - users defines the fitness function

- Define selection probabilities $p(m)$ for each individual m in $M(t)$ so that $p(m)$ is proportional to $u(m)$

- Generate new population $M(t+1)$ by probabilistically selecting individuals from $M(t)$ to produce offspring
 - genetic operators: crossover, mutation, ...

- # Repeat step 2 until satisfying solution is obtained.
Constraint optimization

• Genetic algorithms are related to constraint optimization

• Constraint optimization consists of
 – an objective function to be minimized (fitness function)
 – a set of constraint functions to be maintained
Markov Decision Processes (MDPs)

- a set of states S
- a set of actions A
- a function of expected reward $R(s,a) \rightarrow \text{real numbers}$
- a state transition function $T(s,a) \rightarrow \Pi(S)$
 - a member of $\Pi(S)$ is a probability distribution over the set S
 - $\Pi(S)$ maps states to probabilities
- $T(s,a,s')$ is the probability of making a transition from state s to state s' using action a.
The Markov Property

• A system is Markovian
 – if the state transitions are independent of previous state transitions or agent actions

• The Markov property allows for future states to be estimated using only the current state

• The past and the future are independent given the present
Partially Observable MDPs (POMDPs)

- Robots rarely have complete information

- A robot can only estimate the current state of the environment
 - state estimation for robot belief b

- Incorporate into MDP
 - finite set of observations I
 - the probability of observing w and ending in state s' after taking action a
 - observation probability $O(s', a, w)$
Hidden Markov Models (HMMs)
Petri-nets
State estimation: localization

- Estimate the distribution of probable robot locations
 - Each particle is a hypothesis of a probable robot location
- By navigating the world, impossible hypotheses are eliminated
- Over time, the particle distribution identifies robot location

Fox et al.
Particle filtering

- Condensation

- Distribution as particles
 - particle = hypothesis

- Evaluate distribution through observation on particles
Mapping

• Represent environment as a distribution

• Estimate the probability of a position of the world being occupied

Thrun et al.
From AAAI94
Learning from demonstration

• Humans and the natural world are working models of control and policy learning

• Leverage human tutelage and/or performance to build robot controllers
Probabilistic road maps: learning phase

- Build map of valid configurations
 - start with an initial configuration

Space of valid configurations
Space of invalid configurations

A robot configuration
Boundary of valid configurations

Configuration space
\(C = [\Theta_1, \Theta_2, \ldots \Theta_N] \)

[Kavraki, Svetska, Latombe, Overmars, 95]
Probabilistic road maps: learning phase

- Build map of valid configurations
- Sample neighbors of current config

[Kavraki, Svetska, Latombe, Overmars, 95]
Probabilistic road maps: learning phase

• Build map of valid configurations
• Sample neighbors of current config
• Determine valid neighbors

[Kavraki, Svetska, Latombe, Overmars, 95]
Probabilistic road maps: learning phase

- Build map of valid configurations
- Sample neighbors of current config
- Determine valid neighbors
 - remove invalid
 - place edge transitions between valid neighbors

[Kavraki, Svetska, Latombe,Overmars, 95]
Probabilistic road maps: learning phase

- Build map of valid configurations
- Sample neighbors of current config
- Determine valid neighbors
- Continue exploration from valid neighbors

[Kavraki, Svetska, Latombe, Overmars, 95]
Probabilistic road maps: query phase

• Given learned map

• Find a valid control path between two configurations

• Search on an undirected graph

[Kavraki, Svetska, Latombe, Overmars, 95]
Additional references

- Duda and Hart, “Pattern Classification”
- Bishop, “Neural Networks for Pattern Recognition”
Additional references

• Read my papers (I command you... Muhuwahahaha)