Local features: main components

1) Detection:
 Find a set of distinctive key points.

2) Description:
 Extract feature descriptor around each interest point as vector.

 \[\mathbf{x}_1 = [x_1^{(1)}, \ldots, x_d^{(1)}] \]

3) Matching:
 Compute distance between feature vectors to find correspondence.

 \[d(\mathbf{x}_1, \mathbf{x}_2) < T \]
Review: Harris corner detector

- Approximate distinctiveness by local auto-correlation.
- Approximate local auto-correlation by second moment matrix M.
- Distinctiveness (or cornerness) relates to the eigenvalues of M.
- Instead of computing eigenvalues directly, we can use determinant and trace of M.

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
Trace / determinant and eigenvalues

- Given $n \times n$ matrix A with eigenvalues $\lambda_1 \ldots \lambda_n$

\[
\text{tr}(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i = \lambda_1 + \lambda_2 + \cdots + \lambda_n.
\]

\[
\det(A) = \prod_{i=1}^{n} \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_n.
\]

- $R = \lambda_1 \lambda_2 - \alpha(\lambda_1 + \lambda_2)^2 = \det(M) - \alpha \text{trace}(M)^2$
Harris Detector [Harris88]

\[
M(\sigma_I, \sigma_D) = g(\sigma_I) \ast \begin{bmatrix}
I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\
I_x I_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

1. Image derivatives (optionally, blur first)

\[
det M = \lambda_1 \lambda_2
\]

\[
trace M = \lambda_1 + \lambda_2
\]

2. Square of derivatives

3. Gaussian filter \(g(\sigma_i)\)

4. Cornerness function – both eigenvalues are strong

\[
har = \det[M(\sigma_I, \sigma_D)] - \alpha[\text{trace}(M(\sigma_I, \sigma_D))^2]
\]

\[
= g(I_x^2)g(I_y^2) - [g(I_x I_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2
\]

5. Non-maxima suppression

James Hays
Characteristics of good features

- **Repeatability**
 - The same feature can be found in several images despite geometric and photometric transformations

- **Saliency**
 - Each feature is distinctive

- **Compactness and efficiency**
 - Many fewer features than image pixels

- **Locality**
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion
Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow aI$

Partially invariant to affine intensity change
Image translation

• Derivatives and window function are shift-invariant.

Corner location is covariant w.r.t. translation
Image rotation

Second moment ellipse rotates but its shape (i.e., eigenvalues) remains the same.

Corner location is covariant w.r.t. rotation
Scaling

Corner

All points will be classified as edges

Corner location is not covariant to scaling!
Automatic Scale Selection

How to find corresponding patch sizes?

\[f(I_{i_1 \ldots i_m}(x, \sigma)) = f(I_{i_1 \ldots i_m}(x', \sigma')) \]
Automatic Scale Selection

• Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

• Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
What Is A Useful Signature Function?

• “Blob” detector
 – Laplacian (2^{nd} derivative) of Gaussian (LoG)
Find local maxima in position-scale space

Find maxima

⇒ List of (x, y, s)

K. Grauman, B. Leibe
Difference-of-Gaussian (DoG)

Approximate LoG with DoG (!)
Difference-of-Gaussian (DoG)

Approximate LoG with DoG (!)

1. Blur image with σ Gaussian kernel
2. Blur image with $k\sigma$ Gaussian kernel
3. Subtract 2. from 1.
Find local maxima in position-scale space of Difference-of-Gaussian.

\[
\begin{align*}
\text{Input image} & \quad \text{...} \\
\sigma & \quad k\sigma \\
\sigma & \quad 2k\sigma \\
\sigma & \quad \ldots \\
\ldots
\end{align*}
\]

\[
\Rightarrow \text{List of } (x, y, s)
\]
Results: Difference-of-Gaussian

- Larger circles = larger scale
- Descriptors with maximal scale response
Maximally Stable Extremal Regions [Matas ‘02]

• Based on Watershed segmentation algorithm
• Select regions that stay stable over a large parameter range

K. Grauman, B. Leibe
Example Results: MSER
Local Image Descriptors

Read Szeliski 4.1
Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around each interest point as vector.

3) Matching:
Compute distance between feature vectors to find correspondence.

\[d(x_1, x_2) < T \]
Image Representations: Histograms

Global histogram to represent distribution of features
 – Color, texture, depth, ...

Local histogram per detected point
For what things do we compute histograms?

• Color

L*a*b* color space

HSV color space

• Model local appearance
For what things do we compute histograms?

- Texture
- Local histograms of oriented gradients
- SIFT: Scale Invariant Feature Transform
 – Extremely popular (40k citations)

SIFT – Lowe IJCV 2004
SIFT

• Find Difference of Gaussian scale-space extrema
• Post-processing
 – Position interpolation
 – Discard low-contrast points
 – Eliminate points along edges
SIFT

• Find Difference of Gaussian scale-space extrema
• Post-processing
 – Position interpolation
 – Discard low-contrast points
 – Eliminate points along edges
• Orientation estimation
SIFT Orientation Normalization

- Compute orientation histogram
- Select dominant orientation θ
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]
SIFT

• Find Difference of Gaussian scale-space extrema
• Post-processing
 – Position interpolation
 – Discard low-contrast points
 – Eliminate points along edges
• Orientation estimation
• Descriptor extraction
 – Motivation: We want some sensitivity to spatial layout, but not too much, so blocks of histograms give us that.
SIFT descriptor formation

- Compute on local 16 x 16 window around detection.
- Rotate and scale window according to discovered orientation Θ and scale σ (gain invariance).
- Compute gradients weighted by a Gaussian of variance half the window (for smooth falloff).

Actually 16x16, only showing 8x8
SIFT vector formation

- 4x4 array of gradient orientation histograms weighted by gradient magnitude.
- Bin into 8 orientations x 4x4 array = 128 dimensions.
Ensure smoothness

- Gaussian weight the magnitudes
- Trilinear interpolation
 - A given gradient contributes to 8 bins: 4 in space x 2 in orientation
Reduce effect of illumination

• 128-dim vector normalized to 1
• Threshold gradient magnitudes to avoid excessive influence of high gradients
 – After normalization, clamp gradients > 0.2
 – Renormalize
SIFT-like descriptor in Project 2

• SIFT is hand designed based on intuition
• You implement your own SIFT-like descriptor
• May be some trial and error
• Feel free to look at papers / resources for inspiration
Local Descriptors: SURF

Fast approximation of SIFT idea
- Efficient computation by 2D box filters & integral images
- \(\Rightarrow \) 6 times faster than SIFT
- Equivalent quality for object identification

GPU implementation available
- Feature extraction @ 200Hz
 (detector + descriptor, 640×480 img)
- http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV’06], [Cornelis, CVGPU’08]
Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

Count = 4

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001
Shape Context Descriptor
Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007
Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007
Self-similarity Descriptor

Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007
Learning Local Image Descriptors

Winder and Brown, 2007

- **Image Patch**
- **Smooth $G(x, \sigma)$**
- **T-Block Filter**
- **S-Block Pooling**
- **N-Block Normalize**
- **Descriptor**

- 64x64 Pixels
- ~64x64 vectors of dimension k
- N histograms of dimension k

S1: SIFT grid with bilinear weights
S2: GLOH polar grid with bilinear radial and angular weights
S3: 3x3 grid with Gaussian weights
S4: 17 polar samples with Gaussian weights
Local Descriptors

• Most features can be thought of as templates, histograms (counts), or combinations

• The ideal descriptor should be
 – Robust
 – Distinctive
 – Compact
 – Efficient

• Most available descriptors focus on edge/gradient information
 – Capture texture information
 – Color rarely used

K. Grauman, B. Leibe
Available at a web site near you...

• Many local feature detectors have executables available online:
 – http://www.robots.ox.ac.uk/~vgg/research/affine
 – http://www.cs.ubc.ca/~lowe/keypoints/
 – http://www.vision.ee.ethz.ch/~surf
Next time

• Feature matching, Hough Transform