1950
Future Vision

2020
Computer Vision
Jitendra Malik, UC Berkeley
Three ‘R’s of Computer Vision
Jitendra Malik, UC Berkeley

Three ‘R’s of Computer Vision

“The classic problems of computational vision:
reconstruction
recognition
(re)organization.”
Have you ever used computer vision?
How? Where?

Think-Pair-Share
Have you ever used computer vision?
How? Where?
Reconstruction? Recognition? (Re)organization?

Think-Pair-Share
Laptop: Biometrics auto-login (face recognition, 3D), OCR
Smartphones: QR codes, computational photography (Android Lens Blur, iPhone Portrait Mode), panorama construction (Google Photo Spheres), face detection, expression detection (smile), Snapchat filters (face tracking), Google Tango (3D reconstruction), Night Sight (Pixel)
Web: Image search, Google photos (face recognition, object recognition, scene recognition, geolocalization from vision), Facebook (image captioning), Google maps aerial imaging (image stitching), YouTube (content categorization)
VR/AR: Outside-in tracking (HTC VIVE), inside out tracking (simultaneous localization and mapping, HoloLens), object occlusion (dense depth estimation)
Motion: Kinect, full body tracking of skeleton, gesture recognition, virtual try-on
Medical imaging: CAT / MRI reconstruction, assisted diagnosis, automatic pathology, connectomics, endoscopic surgery
Industry: Vision-based robotics (marker-based), machine-assisted router (jig), automated post, ANPR (number plates), surveillance, drones, shopping
Transportation: Assisted driving (everything), face tracking/iris dilation for drunkeness, drowsiness, automated distribution (all modes)
Media: Visual effects for film, TV (reconstruction), virtual sports replay (reconstruction), semantics-based auto edits (reconstruction, recognition)
Optical character recognition (OCR)
Technology to convert images of text into text

If you have a scanner, it probably came with OCR software

Mail digit recognition, AT&T labs
http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
Face detection

- Almost all digital cameras detect faces
- Snapchat face filters
Smile detection

The Smile Shutter flow
Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.
Object recognition (in supermarkets)
How does it work?

Think-Pair-Share
How does it work?
Thanks to Vivek Ramanujan
Vision-based biometrics

“How the Afghan Girl was Identified by Her Iris Patterns”
Read the story (Wikipedia)
Facial login without a password...
Facial login without a password...
Facial login without a password...

Liang et al. 2014
Video call eye gaze correction

Kuster et al., SIGGRAPH Asia 2012

Apple FaceTime Attention Correction
Object recognition (in mobile phones)

e.g., Google Lens
3D from images

Building Rome in a Day: Agarwal et al. 2009
Human shape capture
Human shape capture
Human shape capture
Human shape capture
Special effects: shape capture
Special effects: shape capture
Special effects: motion capture
Interactive Games

Object Recognition:
http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o

Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg

3D: http://www.youtube.com/watch?v=7QrnwoO1-8A

Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY
Sports

Virtual pitch markings Free viewpoint video

Sportvision first down line
Nice explanation on www.howstuffworks.com

[Canon 2017]
Medical imaging

3D imaging
MRI, CT

Image guided surgery
Grimson et al., MIT
AutoCars - Uber bought CMU’s lab
Industrial robots

Vision-guided robots position nut runners on wheels
Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.

NASA’s Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.
2019 Chang-e 4
Moon Lander
Mobile robots

http://www.robocup.org/

Saxena et al. 2008
STAIR at Stanford

Skydio 2 drone
6x fisheye cameras for obstacle avoidance
Onboard NVIDIA GPU

amazon Prime Air

STARSHIP
Augmented Reality and Virtual Reality

MS HoloLens, Oculus, Magic Leap, ARCore / ARKit
Augmented Reality and Virtual Reality

Real-time monocular depth estimation and camera tracking

Real-time 3D hand pose estimation

Oculus (Quest)

Niantic
Jitendra Malik, UC Berkeley
Three ‘R’s of Computer Vision

“[Further progress in] the classic problems of computational vision:

reconstruction
recognition
(re)organization

[requires us to study the interaction among these processes].”
Computer Vision and Nearby Fields

Derogatory summary of computer vision:
“Machine learning applied to visual data.”
Computer Vision and Nearby Fields

Derogatory summary of computer vision:
“Machine learning applied to visual data.”

Real world
Images, videos, sensor data...

Model of the visual world

Information

Digital world
Images, videos, interaction

Computer Vision

Computer Graphics
Superhuman state of the art?

Deep learning is an enormous disruption to the field. Since 2012, rapid expansion and commercialization. Why?

“With enough data, computer vision matches or even outperforms human vision at most recognition tasks.”

WHAT.
Vision and Society

Lots of data = lots of potential bias in the data.

Needs understanding of possible failures.

+ Responsible approach.

+ Techniques to overcome bias.
Regulators want time to work out how to prevent the technology being abused.

The technology allows faces captured on CCTV to be checked in real time against watch lists, often compiled by police.

The Commission ... suggests that new rules will be introduced to bolster existing regulation surrounding privacy and data rights ...

... and urged EU countries to create an authority to monitor the new rules.

During the ban, which would last between three and five years, "a sound methodology for assessing the impacts of this technology and possible risk management measures could be identified and developed".
WHO'S SHAPING THE DIGITAL WORLD?
73. DJ Khaled

Snapchat icon; DJ and producer

Louisiana-born Khaled Mohamed Khaled, aka DJ Khaled, cut his musical chops in the early 00s as a host for Miami urban music radio WEDR. He proceeded to build a solid if not dazzling career as a mixtape DJ and music producer (he founded his label _We The Best Music Group_ in 2008, and was appointed president of _Def Jam South_ in 2009).
69. Geoffrey Hinton

Psychologist, computer scientist; researcher, Google Toronto

British-born Hinton has been dubbed the "godfather of deep learning". The Cambridge-educated cognitive psychologist and computer scientist started being an ardent believer in the potential of neural networks and deep learning in the 80s, when those technologies enjoyed little support in the wider AI community.

But he soldiered on: in 2004, with support from the Canadian Institute for Advanced Research, he launched a University of Toronto programme in neural computation and adaptive perception, where, with a group of researchers, he carried on investigating how to create computers that could behave like brains.

Hinton’s work – in particular his algorithms that train multilayered neural networks – caught the attention of tech giants in Silicon Valley, which realised how deep learning could be applied to voice recognition, predictive search and machine vision.

The spike in interest prompted him to launch a free course on neural networks on e-learning platform Coursera in 2012. Today, 68-year-old Hinton is chair of machine learning at the University of Toronto and moonlights at Google, where he has been using deep learning to help build internet tools since 2013.
63. Yann LeCun

Director of AI research, Facebook, Menlo Park

LeCun is a leading expert in deep learning and heads up what, for Facebook, could be a hugely significant source of revenue: understanding its user's intentions.
63. Yann LeCun

Director of AI research, Facebook, Menlo Park

LeCun is a leading expert in deep learning and heads up what, for Facebook, could be a hugely significant source of revenue: understanding its user’s intentions.

61. Taylor Swift

Entertainer, Los Angeles
Google-backed startup DeepMind Technologies has built an artificial intelligence agent that can learn to successfully play 49 classic Atari games by itself, with minimal input.
8. Demis Hassabis

Co-founder and CEO, DeepMind, London

In March 2016, DeepMind’s AI AlphaGo beat the Go world champion Lee Se-dol. The Google-owned startup is moving machine learning forward at a pace that could affect every industry, from healthcare to commerce.
COURSE ETHOS AND SCOPE
“To create the ship is not to weave the webs, to forge the nails, to read the stars, but to give the taste of the sea.”

Saint Exupéry
Scope of Computer Vision

CSCI 1430: Pull from all of them!
Prerequisites

• **Linear algebra**, basic calculus and probability.
• Programming, data structures.

This is an upper-level course. We move fast.

If you’re rusty, we point you to refreshers.
HERE TO HELP!
ETAs!

Isabella Ting

Katie Friis
Contact

- Piazza—your first stop for questions and clarifications. Piazza will be staffed at specific times, when a member of the team will be answering questions (existing and new). At other times, please pull together as a class and help each other, and we'll help soon.
- cs43otas@lists.brown.edu—your second stop for less typical questions.

Office/Piazza Hours

Course Description

This course provides an introduction to computer vision, including fundamentals of image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, image classification, scene understanding, and deep learning with neural networks. We will develop basic meth-
My Office Hours
jamestompkin.com

Contact
Office hours: Tues 1-2pm
Book appointment
Brown GCal: Use 'Find a Time'
Instructions
james_tompkin@brown.edu
Follow @jamestompkin
Follow @tompkin
YouTube

Assistant Prof. at Brown CS
BROWN Computer Science

Research Overview

How can we make video a creative medium for everyone?
How can computation remove barriers from interaction?
How can image understanding help us explore media?

To help answer these questions, I create graphics, vision, and interaction techniques to improve our understanding of the connections within media.

Academic lineage

- Post-doc with Prof. Hanspeter Pfister at the Harvard Paulson School of Engineering and Applied Sciences
- Post-doc with Prof. Christian Theobalt at the Max-Planck-Institute for Informatics and the Interactive Systems Group, University of Saarland
- Research intern with Prof. Wojciech Matusik at Disney Research, Cambridge
COURSE SETUP
CSCI 1430 – James Hays

• Continuing his course – many materials & projects from him + previous staff – serious thanks!
• If you see a little ‘JH’ in the slide corner, then it’s his.
Contact

• Course runs *quiet hours* – 9pm to 9am.
 – We will ignore you (temporarily).

• Piazza first
 – TAs have set Piazza hours.

• cs1430tas@lists.brown.edu second
Waitlist / Override codes

• Yes, we are oversubscribed (50+)
• Yes, we have priority
 – seniors + grads, juniors, sophomores, fresh
• We will authorize overrides later in shopping week once it calms down
• Request an override on cab.brown.edu
1. Search for course
2. Make sure added to cart
3. Request override
Textbooks

Computer Vision: Algorithms and Applications

© 2010 Richard Szeliski, Microsoft Research

http://szeliski.org/Book/
Textbooks

https://ccv.wordpress.fos.auckland.ac.nz/

Klette
Concise Computer Vision

Digital copy at our library

More introductory than Szeliski.
Textbooks

Deep Learning
An MIT Press book
Ian Goodfellow and Yoshua Bengio and Aaron Courville

- Can I get a PDF of this book?
 No, our contract with MIT Press forbids distribution of too easily copied electronic formats of the book.

- Why are you using HTML format for the web version of the book?
 This format is a sort of weak DRM required by our contract with MIT Press. It's intended to discourage unauthorized copying/editing of the book.

- What is the best way to print the HTML format?
 Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
Projects / Grading

• 100% projects (7 total)

• Project 0: Setup / intro
• Projects 1-5: Structured conceptual / code
• Project 6: Final group project

<table>
<thead>
<tr>
<th>Project</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2%</td>
</tr>
<tr>
<td>1–5</td>
<td>~14.6%</td>
</tr>
<tr>
<td>6</td>
<td>~25%</td>
</tr>
</tbody>
</table>
Submission system: Gradescope

Brown CSCI 1430
Introduction to Computer Vision

Dashboard
Assignments
Roster
Course Settings

INSTRUCTOR
James Tompkin

ACTIVE ASSIGNMENTS

<table>
<thead>
<tr>
<th>ASSIGNMENT</th>
<th>RELEASED</th>
<th>DUE (EST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1 Code</td>
<td>JAN 23</td>
<td>FEB 01 AT 9:00PM</td>
</tr>
<tr>
<td>Project 1 Written Questions</td>
<td>JAN 23</td>
<td>FEB 01 AT 9:00PM</td>
</tr>
<tr>
<td>Project 0 Written Questions</td>
<td>JAN 23</td>
<td>JAN 25 AT 9:00PM</td>
</tr>
</tbody>
</table>

https://cs.brown.edu/courses/csci1430/
• Anonymous submissions please.
 – Don’t put your name into Gradescope; only your Brown email.
 – Use fake name if you need to.

• Written questions:
 – It’s a template to help us grade efficiently.
 – Use _only_ the space provided
 – Please don’t make more/fewer pages
 – You can put extra pages at the end
Gear-up Session (video captured):

TONIGHT 6pm Barus and Holley 168

What is Git?
What is Github?
What is Gradescope?
What is Visual Studio Code?
What is Python / Virtual Environment?

How they work together.

I promise it’s worth it.
How it works – project example

You:

- Repo copy from our Github
- Work / debug in Python in VSCode
- Push to your own repo
- Submit repo to Gradescope

Us:

- Push template repo to Github
- Office hours + Piazza
- Grade your repo on Gradescope

Release date

Due date
Proj 1: Image Filtering and Hybrid Images

• Implement image filtering to separate high and low frequencies.
• Combine high frequencies and low frequencies from different images to create a scale-dependent image.
Proj 2: Local Feature Matching

• Implement interest point detector, SIFT-like local feature descriptor, and simple matching algorithm.
Proj 3: Scene Recognition with Bag of Words

• Quantize local features into a “vocabulary”, describe images as histograms of “visual words”, train classifiers to recognize scenes based on these histograms.
Proj 4: Convolutional Neural Nets

• Proj 3 again, but state of the art.
Proj 5: Multi-view Geometry

- Recover camera calibration from feature point matches.
- Foundation for almost all measurement in computer vision.
Proj 6: Group Final Project

- Free choice with a set of suggested projects
- Up to four people
- Go wild

Project examples
- Real-time eye tracking
- Multi-view geometry reconstruction
- Computational photography
- Style Transfer
- Adversarial CNN hacking
Friendly neighborhood style transfer
Naive frame-by-frame rendering
Temporal Consistency Constraints
Hyperlapse Stabilization - Michael Mao, Jiaju Ma, James Li

Baseline Video

Result Video
Darius Atmar, Yueyi Sun, Zejiang Shen

CSCI1430 Spring 2019 Final Project
Any questions at this stage?!

- Waitlist on cab.brown.edu – request override
 - *If you’re on the waitlist, still submit project 0+1*

- Gear Up Session TONIGHT 6pm B&H 168
 - *Lecture captured if you can’t make it*

- TA hours from *today*

- Project 0 due FRIDAY 9pm
- Project 1 due NEXT FRIDAY 9pm
JAMES
I work in here.
Render pixels?
Capture pixels?
Interact with pixels?
I am probably interested.

Watch my research overview video!