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Goals 

• Image gradient 

• Filtering as feature detection 

• Convolution vs correlation 

• Time permitting: images as vectors 
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Next week 

• Wednesday: data for assignment 2.  

important that you attend. 

• Friday: Silvia Zuffi – color  

CS143 Intro to Computer Vision 
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Recall derivatives of Gaussian 
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What is the gradient? 

Change 

No Change 

Jacobs 
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What is the gradient? 

No Change 

Change 

Jacobs 
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What is the gradient? 

Large Change 

Small  Change 
Gradient direction is 

perpendicular to edge. 

Jacobs 

Gradient Magnitude 

measures edge strength. 
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2D Edge Detection 

Take a derivative 

– Compute the magnitude of the gradient: 

Jacobs 
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There are three major issues:
   1) The gradient magnitude at different scales is different; which should
       we choose?
   2) The gradient magnitude is large along a thick trail; how
        do we identify the significant points?
   3) How do we link the relevant points up into curves?

Ponce & Forsyth 
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Non-Maxima Suppression 

Look in a neighborhood along the direction of the gradient. 

Choose the largest gradient magnitude in this neighborhood.. 
Ponce & Forsyth 
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Ponce & Forsyth 
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fine scale
high 
threshold

Ponce & Forsyth 
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coarse 
scale,
high 
threshold

Ponce & Forsyth 
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coarse
scale
low
threshold

Ponce & Forsyth 
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Compare these detected edges to human marked edges: 

 Humans focus on semantic edges and they don’t always agree. 

Berkeley Segmentation Dataset and Benchmark 

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ 
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Berkeley Segmentation Dataset and Benchmark 

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ 
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Direction of the Gradient 

Ix 

Iy 
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Steerable filters 

What is the gradient in some direction ?
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I
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In the  direction of the gradient: 
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Features (problem 3) 
What do the derivatives look like in these neighborhoods? 

What can you tell about an image neighborhood from the 

local image derivatives? 
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Partial derivatives 
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Partial derivatives 
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Partial derivatives 
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Partial derivatives 
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Partial derivatives 
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Rank of these matrices? 
(ie maximum number of linearly independent columns) 
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Rank? 
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Rank? 
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Let’s step back a moment… 

Convolution   Correlation   Feature detection 

f 
I H 

Notice the “flipping” of the filter. 
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Let’s step back a moment… 

Convolution   Correlation   Feature detection 

H=imfilter(I, f, 'symmetric', 'conv'); 

f 
I H 
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Let’s step back a moment… 

Convolution   Correlation   Feature detection 

f 
I H 
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Let’s step back a moment… 

Convolution   Correlation   Feature detection 

dBarb=imfilter(im, dGx, 'symmetric', 'corr'); 

f 
I H 
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What’s the difference? 
Convolution: 

Correlation: 

Convolution is associative:  

Correlation is not. 

For symmetric filters, there is no difference. 
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Example: Correlation 

[-1 1] [1 -1] [-1 1] 

CS143 Intro to Computer Vision 

[1 -2 1] 

[1 -3 3 -1] 

[1 -2 1] 

[-1 3 -3 1] 
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Example: Convolution 

[-1 1] [1 -1] [-1 1] 

CS143 Intro to Computer Vision 

[-1 2 -1] 

[1 -3 3 -1] 

[-1 2 -1] 

[1 -3 3 -1] 
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Strange, eh? 

• In the Fourier domain this is easy to explain 
(convolution is multiplication in the Fourier domain and is hence 
associative but correlation involves taking the complex conjugate of 
the filter – if the order is reversed, you take the complex conjugate of 
the image which changes the result). 

• For this class this can essentially be ignored.  
From now on we’ll mostly use correlation. 

• If you don’t believe it, try out the Matlab 
script on the web for this lecture. 
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Convolution vs Correlation 

CS143 Intro to Computer Vision 

http://www-structmed.cimr.cam.ac.uk/Course/Convolution/convolution.html 


