Goals

• Today
 – Binocular stereo

• Friday
 – Either object recognition or human shape and pose.
Binocular Stereo
Binocular Stereo

Left

Right
Binocular Stereo
Binocular Stereo

Left

Right

CS143 Intro to Computer Vision

©Michael J. Black
Binocular Stereo

Left

Right
Binocular Stereo

Left

Right

binocular disparity
Binocular Stereo

From known geometry of the cameras and estimated disparity, recover depth in the scene.
Stereo Geometry

left camera

right camera

Scharstein
Stereo Geometry
Stereo Geometry

Disparity d

$= \text{difference in image position}$
Stereo Geometry

Disparity d

= difference in image position
Stereo Geometry

- Left camera
- Right camera
- Z
- b
- f
- d
Stereo Geometry

\[\frac{d}{f} = \frac{b}{Z} \]

Disparity \(d = bf \frac{1}{Z} \)
Binocular Disparity

$Z(x, y)$ is depth at pixel (x, y)
$d(x, y)$ is disparity

Estimate:

$Z(x, y) = \frac{fb}{d(x, y)}$

Search for best match
Binocular Disparity

$Z(x, y)$ is depth at pixel (x, y)
$d(x, y)$ is disparity

Estimate:

$$Z(x, y) = \frac{fb}{d(x, y)}$$

Do I need to consider this region?
Epipolar Geometry
Epipolar Geometry

O_1 P_1 P P_2 O_2
Epipolar Geometry

Epipoles

baseline
Epipolar Geometry

epipolar plane

epipolar lines
Epipolar Geometry

Possible matches for p_1 are constrained to lie along the epipolar line in the other image.
Epipole

- Every plane through the baseline is an epipolar plane, and determines a pair of epipolar lines in the two images.
- Two systems of epipolar lines are obtained, each system intersects in a point, the *epipole*.
- The epipole is the projection of the center of the other camera.
Rectification

Rectification aligns epipolar lines with scanlines.
- warp images

Szeliski and Fleet
Rectification

Szeliski and Fleet
Matching

* Matching only has to occur along epipolar lines.
* Now in the simpler binocular case where the cameras are pointing forward.
* Compare with optical flow.
Stereo Correspondence

• Search over disparity to find correspondences
• Range of disparities to search over can change dramatically within a single image pair.
Correspondence Using SSD

SSD error

disparity

scanline
Sum of Squared (Pixel) Differences

w_L and w_R are corresponding m by m windows of pixels.

The SSD cost measures the intensity differences as a function of disparity:

$$SSD_r(x, y, d) = \sum_{(x', y') \in W_m(x, y)} (I_L(x', y') - I_R(x' - d, y'))^2$$
Dealing with ambiguity

Many repeated structures

* Collect multiple views with different baselines.

M. Okutomi, T. Kanade, Multiple-Baseline Stereo
\[\frac{d}{fb} = \frac{1}{Z} \]

Fig. 5. SSD values versus inverse distance: (a) \(B = 3b \); (b) \(B = 4b \); (c) \(B = 5b \); (d) \(B = 6b \); (e) \(B = 7b \); (f) \(B = 8b \).

The horizontal axis is normalized such that \(8bB^2 = 1 \).

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

M. Okutomi, T. Kanade, Multiple-Baseline Stereo
Matching

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.
 - occlusion

\[
E_r(x, y, d) = \sum_{(x', y') \in W_m(x, y)} \rho(I_L(x', y') - I_R(x'-d, y'))
\]

Robust matching function.

Looks like optical flow. Why don’t we linearize this?
Matching

• Even when the cameras are identical models, there can be differences in gain and sensitivity.
• The cameras do not see exactly the same surfaces, so their overall light levels can differ.
 – occlusion

\[
E_r(x,y,d,a,b) = \sum_{(x',y') \in W_m(x,y)} \rho(I_L(x',y') - (aI_R(x'-d,y') + b))
\]

Can add parameters to model illumination differences between cameras.
Correspondence Using SSD

Left

Disparity Map

Images courtesy of Point Grey Research
Bayesian Interpretation

\[p_M(d \mid I_L, I_R) \]

How do we proceed?
Bayesian inference

Prior model \(p_P(d)\)

Likelihood model \(p_M(I_L, I_R| d)\)

Posterior model

\[
p(d | I_L, I_R) = k p_M(I_L, I_R| d) p_P(d)
\]

Maximum a Posteriori (MAP estimate):

maximize \(p(d | I_L, I_R)\)