Introduction to Computer Vision

Michael J. Black
Oct. 2009

Lecture 10:
Images as vectors.
Appearance-based models.
News

• Assignment 1 parts 3&4 – extension.
 – Due tomorrow, Tuesday, 10/6 at 11am.
Goals

• Images as vectors in a high dimensional space

• Wed/Fri: Covariance, eigenvalues, features, principal component analysis.
 – Prep for next homework
Image Filtering

- Smoothing and sharpening
- Edge detection
- Feature detection/search

Source: T. Darrell
Filters for features

- Previously, thinking of filtering as a way to remove or reduce noise
- Now, consider how filters will allow us to abstract higher-level “features”.
 - Map raw pixels to an intermediate representation that will be used for subsequent processing
 - Goal: reduce amount of data, discard redundancy, preserve what’s useful

Source: T. Darrell
Filters as “templates”

- Note that filters look like the effects they are intended to find --- “matched filters”

- Use normalized cross-correlation score to find a given pattern (template) in the image.
 - Szeliski Eq. 8.11

- Normalization needed to control for relative brightnesses.

Source: T. Darrell
Normalized cross correlation

$$E_{NCC}(u) = \frac{\sum_i [I_0(x_i) - \bar{I}_0] [I_1(x_i + u) - \bar{I}_1]}{\sqrt{\sum_i [I_0(x_i) - \bar{I}_0]^2 [I_1(x_i + u) - \bar{I}_1]^2}},$$

$$\bar{I}_0 = \frac{1}{N} \sum_i I_0(x_i) \quad \text{and} \quad \bar{I}_1 = \frac{1}{N} \sum_i I_1(x_i + u)$$
Template matching

Scene

Template (mask)

A toy example

Source: T. Darrell
Template matching

Detected template

Template

Source: T. Darrell
Template matching

Detected template

Correlation map

Source: T. Darrell
Where’s Waldo?
Where’s Waldo?

Template

Source: T. Darrell
Where’s Waldo?

Detected template

Correlation map

Source: T. Darrell
Let’s step back a moment…

Convolution Correlation Feature detection

\[H[m, n] = f \ast I = \sum_{k,l} f[k, l] I[m + k, n + l] \]
Image as vectors

Convolution

\[
f = \begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_{K \times L}
\end{bmatrix}
\]

Correlation

\[
\Delta = g = \begin{bmatrix}
 I_{m,n} \\
 I_{m+1,n} \\
 \vdots \\
 I_{m+K,n+L}
\end{bmatrix}
\]

Feature detection

\[
H[m, n] = f \ast I = \sum_{k,l} f[k,l] I[m+k, n+l]
\]
Image as vectors

Convolution

\[
\begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_{K \times L}
\end{bmatrix}
\]

Correlation

\[
\begin{bmatrix}
 I_{m, n} \\
 I_{m+1, n} \\
 \vdots \\
 I_{m+K, n+L}
\end{bmatrix}
\]

Feature detection

\[
H[m, n] = f \cdot g = f^T g = \sum_{i=1}^{KL} f[i] g[i]
\]
Images as Points (Feature detection)

Matching involves deciding how far apart they are in this space.
Template Matching

\[p_i \cdot p_j = |p_i||p_j| \cos \theta \]

Angle between the vectors

Image patch as a vector

Template or filter as a vector

\[|p| = \sqrt{p_1^2 + p_1^2 + \ldots + p_n^2} \]
Template Matching

Correlation (sum of product of “signals”)

Template or filter as a vector

Image patch as a vector

Normalized correlation:

$$\frac{p_i \cdot p_j}{|p_i||p_j|} = \cos \theta$$

Angle between the vectors
Dot Product

Consider the 2D case. Want to know θ

Note that $\theta = \theta_1 - \theta_2$

Also $\cos \theta = \cos(\theta_1 - \theta_2)$
Dot Product

\[p_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \]

\[p_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \]

\[
\cos \theta = \cos(\theta_1 - \theta_2) \\
= \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2
\]
Dot Product

\[p_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \]

\[p_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \]

\[
\cos \theta = \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2
\]

\[
= \frac{x_1}{|p_1|} \frac{x_2}{|p_2|} + \frac{y_1}{|p_1|} \frac{y_2}{|p_2|} = \frac{x_1 x_2 + y_1 y_2}{|p_1||p_2|}
\]
Dot Product

\[p_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \]

\[p_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \]

\[|p_1| |p_2| \cos \theta = x_1 x_2 + y_1 y_2 = p_1 \cdot p_2 \]
Dot Product

\[p_i = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{K\times L} \end{bmatrix} \]

\[p_j = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{K\times L} \end{bmatrix} \]
One more connection...

- Problem 4 in Asgn 1 uses corr2 which computes the correlation coefficient, \(r \), defined as:

\[
 r = \frac{\sum_{k,l} (f(k,l) - \bar{f})(g(k,l) - \bar{g})}{\sqrt\left(\sum_{k,l} (f(k,l) - \bar{f})^2 \right) \left(\sum_{k,l} (g(k,l) - \bar{g})^2 \right)}
\]

Where \(\bar{g}, \bar{f} \) are the means of the patches.
One more connection...

If \(g, f \) are zero mean, then

\[
 r = \frac{\sum_{k,l} (f(k,l) - \bar{f})(g(k,l) - \bar{g})}{\sqrt{\left(\sum_{k,l} (f(k,l) - \bar{f})^2\right)\left(\sum_{k,l} (g(k,l) - \bar{g})^2\right)}}
\]

This is just normalized correlation:

\[
 \frac{f \cdot g}{\|f\| \|g\|} = \cos \theta
\]
Search and Recognition.

1. How can we find the mouth?
2. How can we recognize the “expression”?
Naïve Appearance-Based Approach

Database of mouth “templates”

- Search every image region (at every scale).
- Compare each template; chose the “best” match (Euclidean, correlation, …)
Appearance-Based Methods

Represent objects by their appearance in an ensemble of images, including different poses, illuminants, configurations of shape, …

Approaches covered here:

- Subspace (eigen) Methods
- Local Invariant Image Features
Images as Vectors

e.g. standard lexicographic ordering
Images as Points

Points in nxm dimensional space

\[p_i = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n \times m} \end{bmatrix} \]

\[p_j = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n \times m} \end{bmatrix} \]

Matching involves deciding how far apart they are in this space.