Sample Final Exam

CSCI 1420 - Spring 2020

The instructions below are just to illustrate the format of the true final. So you can post on Piazza, etc. about the sample final.

Instructions

Timeline: The final will be posted on the course homepage no later than noon Eastern U.S. time on Thursday, May 7. It must be submitted on Gradescope by 11:59 PM Eastern U.S. time on Friday, May 8. No late days may be used on the final. For every minute past the deadline it is late, one percentage point will be deducted from the grade.

Exam Format: There are eight problems, each worth 1/7 of the exam. You may choose one problem to count as extra credit, worth 1/2 of a regular problem. To indicate your choice, mark the blank line where indicated for that problem. If you do not make a choice, or your choice is otherwise unclear, the last problem will be treated as extra credit. We will not adjust a student’s selection to optimize their score.

Submission Format: You may submit a PDF using the provided Latex, or you may submit handwritten answers. You are encouraged to use Latex if possible, as any illegible parts of answers will be marked incorrect.

Academic Integrity: The course collaboration policy does not apply to this exam. Instead, you may not communicate with anyone other than course staff about the exam in any way. You may consult the course textbook, course notes, slides, homeworks, recorded lectures and discussion sessions, or existing messages on Piazza. You may not post anything new that is public to Piazza during the exam period. (See below.) Violating these instructions will be considered academic dishonesty.

Getting Help: If you have any questions about the content of the exam or technical difficulties, please first consult the “Official FAQ” that will be pinned on Piazza. If your question is not answered there, please email the HTA list: cs1420headtas@lists.brown.edu. We will respond as soon as possible, but please keep in mind that latency of up to 20 minutes is reasonable. In addition, the mailing list is only monitored from 9 AM to midnight Eastern U.S. time, so please plan accordingly.

If you have any other issues or concerns, such as challenging or unexpected circumstances, please contact Steve directly: stephen_bach@brown.edu.
Problem 1 (Representations)
Consider the following training data set with two classes in \mathbb{R}^2.

For each of the following hypothesis classes, state whether it can perfectly fit the above training data. Explain your answer.

a. Logistic Regression:

b. 3-Nearest Neighbors:

c. Support Vector Machine with Linear Kernel:
Problem 2 (Loss Functions)

Consider the 1-dimension hinge loss for a single training example \(x = 1 \) and \(y = 1 \) and a homogeneous halfspace with one weight \(w \in \mathbb{R} \):

\[
\ell_{\text{hinge}}(w) = \begin{cases}
0 & \text{if } w \geq 1 \\
1 - w & \text{if } w < 1
\end{cases} = \max\{0, 1 - w\}
\]

\(\ell_{\text{hinge}}(w) \) is a convex function that upper bounds another loss function called the ramp loss:

\[
\ell_{\text{ramp}}(w) = \begin{cases}
0 & \text{if } w \geq 1 \\
1 - w & \text{if } 0 < w < 1 \\
1 & \text{if } w \leq 0
\end{cases}
\]

a. Show that \(\ell_{\text{ramp}}(w) \) is a non-convex function.

b. When learning a halfspace over many training examples, what could be an advantage of using the hinge loss over the ramp loss, and vice versa, what could be an advantage of using the ramp loss over the hinge loss?
Problem 3 (Optimizers)

Consider the hypothesis class of two-dimensional thresholds, $H = \{h_{a,b} : a \in \mathbb{R} \text{ and } b \in \mathbb{R}\}$ where:

$$h_{a,b}(x) = \begin{cases}
1 & \text{if } x_1 \leq a \text{ and } x_2 \leq b \\
-1 & \text{otherwise}
\end{cases}$$

and $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{Y} = \{-1, 1\}$.

Describe an algorithm for computing the ERM for this class in the realizable case. (You can assume 0-1 loss, although the solution will be the same for any reasonable loss function.) State the computational complexity of the algorithm in the context of a training data set of size m.
Problem 4 (Empirical and Expected Risk)

For this problem, we are looking for responses that both indicate your assessment as to a possible accuracy change and your understanding of the algorithm that led to this assessment. Answers should be two or three sentences long and focus on the relevant and important issue.

a. We have trained a logistic regression model (binary vector input, binary label, no regularization) on a data set. Then, we create a new data set that is identical to the original but it includes a new feature that is set uniformly at random, with no strong correlation to any of the other features or the label, and run the same learning algorithm again. What would you expect to happen to the training and testing losses of the new learned model?

b. We have trained a logistic regression model (binary vector input, binary label, no regularization) on a data set. Then, we create a new data set that is identical to the original but includes a new attribute that is the Boolean negation of the label and run the same learning algorithm again. What would you expect to happen to the training and testing losses of the new learned model?
Problem 5 (Model Selection)

Consider the following (partially labeled) model selection curve for boosted halfspace classifiers learned with AdaBoost:

![Model Selection Curve]

a. Describe the likely interpretation of the following parts of the above figure, based on the bias-complexity tradeoff. Include a specific statement of what that part of the figure represents, and provide a brief explanation justifying your interpretation.

The horizontal axis (with values 1 through 7):

Curve A (solid line):

Curve B (dotted line):

b. If you were using the above model selection curve to choose a specific value on the horizontal axis to use for the corresponding task, which would you choose? Why?
Problem 6 (Generative Models)

Consider the following training data for binary classification of two-bit vectors, i.e., $\mathcal{X} = \{0,1\}^2$ and $\mathcal{Y} = \{0,1\}$:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Using a maximum likelihood Naive Bayes model with Laplace smoothing of 1, what is the probability $P(y = 1|x_1 = 1, x_2 = 0)$, i.e., the probability that a test example $(1,0)$ has the label 1? (Assume that the distributions $P(y)$ and all $P(x_i|y)$ are Bernoulli, i.e., binary.)
Problem 7 (Unsupervised Learning)

A mixture of K Gaussians learns a set of K normal distributions as the generative model for a given set of data. What if we wanted to learn a generative model that uses *uniform* distributions over intervals in \mathbb{R} instead? In this setup, there is still a multinomial distribution over mixture components, but instead of each component being a Gaussian distribution, it is a uniform distribution with a density defined by the parameters a, b where $a < b$:

$$
p(x) = \begin{cases}
\frac{1}{b-a} \quad & \text{if } a \leq x \leq b \\
0 \quad & \text{otherwise}
\end{cases}
$$

Suppose we want to learn such a K uniform distributions mixture model where $K = 3$ using expectation maximization. Further suppose our data comprises four points in \mathbb{R}: 0.13, 0.21, 0.57, 0.82.

a. The E step, given a set of parameters and the data, should compute a probability that each data point came from each interval. Fill in the conditional probability $p(\cdot|x)$ for each of the data points in the column corresponding to each mixture component A, B, and C, with the specified current estimates of the parameters (a, b). Assume that the current estimates of the prior are $p(A) = p(B) = p(C) = \frac{1}{3}$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>(0.1, 0.3)</td>
<td>(0.2, 0.7)</td>
<td>(0.8, 0.9)</td>
</tr>
<tr>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. The M step should find the maximum likelihood intervals for each component with respect to the conditional probabilities computed in the E step. Suppose after a different E step from the one above, the following probabilities were obtained. Compute the result of the M step using this table. Your answer should be estimates for 9 parameters: $a_A, b_A, a_B, b_B, a_C, b_C, p(A), p(B),$ and $p(C)$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.21</td>
<td>0.2</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>0.57</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>0.82</td>
<td>0.1</td>
<td>0.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Problem 8 (VC Dimension)

Consider (again, see problem 3) the hypothesis class of two-dimensional thresholds, \(H = \{ h_{a,b} : a \in \mathbb{R} \text{ and } b \in \mathbb{R} \} \) where:

\[
 h_{a,b}(x) = \begin{cases}
 1 & \text{if } x_1 \leq a \text{ and } x_2 \leq b \\
 -1 & \text{otherwise}
 \end{cases}
\]

and \(\mathcal{X} = \mathbb{R}^2 \) and \(\mathcal{Y} = \{-1, 1\} \).

What is the VC dimension of this hypothesis class? Provide a complete proof.