Distributed Systems

Day 1: Introduction

Jan 21, 2021
About Me!

• Theophilus Benson
 • Office: CIT 327 (on Zoom 🎧)
 • Office Hours: 2:30-3:30 after class

• Research Interests:
 • Networking for Developing Regions
 • ML for Systems
 • Highly Available Infrastructures

• Non-Research Interests:
 • Climbing (being horrible at Climbing)

• Academic
 • PhD U of Wisconsin (2012)
 • PostDoc Princeton (2013)
 • Prof @ Duke (2013-2017)

• Industry
 • Microsoft (2008-2010)
 • Facebook (2014 & Now)
About Me!

• Theophilus Benson
 • Office: CIT 327 (on Zoom 😊)
 • Office Hours: 2:30-3:30 after class

• Research Interests:
 • Networking for Developing Regions
 • ML for Systems
 • Highly Available Infrastructures

• Non-Research Interests:
 • Climbing (being horrible at Climbing)
Course Staff!

• Instructor
 • Theophilus Benson (tab@cs.brown.edu)

• HTAs
 • John Lhota

• TAs
 • Akshat Mahajan (amahaja5)
 • Johnny Roy (jroy8)
 • March Boonyapaluk (kboonyap)
 • Qingyi Li (qlu9)
 • Xiling Zhang (xzhan199)
A *distributed system* is a system whose *components* are located on different *networked computers* ... The components interact with one another in order to achieve a *common goal*.
Why Do You Need a Distributed System?
IoT Frameworks
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices...

TensorFlow Architecture

https://www.tensorflow.org/guide/extend/architecture
Byzantine Fault Tolerance: The Key for Blockchains

June 29, 2017, 12:03:44 PM EDT By Christopher Tozzi, Distributed

https://www.nasdaq.com/article/byzantine-fault-tolerance-the-key-for-blockchains-cm810058
Benefits of a Distributed System

• Performance

• Scalability

• Resource Sharing

• Fault Tolerance
Google Case Study

http://www.google.com
Google Case Study

• Goal: Rank webpages
 • Index and store large data
 • @2009: 4+ PB Filesystems

• Problem with one server
 • Can’t store all the data
 • Can’t process all the data

• @2013, 12 DCs around the world

http://www.google.com
Facebook Case Study

https://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919
Facebook Case Study

• Goal: Quickly show ads to users
 • Users are spread out around the world

• Problem: traffic can’t go faster than the speed of light

• @2007 FB, Opens a second DC

https://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919
This Class

Challenges:
• Availability
• Performance
• Consistency
• Security

Algorithms and designs to enable a set of components to behave as one during arbitrary failures modes

Node Failures
Network Failures
How do I design Google Drive?

What is a consistency model? What is the right consistency model?

How do I pick between performance and availability?

What is the appropriate mechanism for load balancing!
CS1380 – How to Design an Online Service Network
Course Information
Distributed Systems Are Hard to Build!

Challenges:
- Availability
- Performance
- Consistency
- Coordination
- Security

Algorithms and designs to enables a set of components to behave as one during arbitrary failures modes

Node Failures
Network Failures
Communication
(Naming, RPC, TCP/UDP)

Load Balancing: DHT
(Sharding, Replication, Partitioning)

Ordering: Time
(Global Snapshots)

Consensus: Agreement, Consistency, Coordination
(Active/Passive/Lazy Replication, Transactions....)

Distributed Systems in the Field
(Google, Amazon, Facebook, MongoDB)

1 week

1 week

1 week

3 weeks

4 weeks

Note: This accounts for 10 of the 11 weeks.
Communication
(Naming, RPC, TCP/UDP)

Load Balancing: DHT
(Sharding, Replication, Partitioning)

Ordering: Time
(Global Snapshots)

Consensus: Agreement, Consistency, Coordination
(Active/Passive/Lazy Replication, Transactions....)

Distributed Systems in the Field
(Google, Amazon, Facebook, MongoDB)

Proj 1: LiteMiner
Proj 2: Tapestry
Proj 3: Raft
Proj 4: Puddlestore

Each Project has labs to help prep you for the project
Workload

• Homeworks (15%) (6 HWs)
• Projects (50%) (4 projects)
• Exams (25%)
 • Midterm (10%)
 • Final (15%)
• Post lecture quizzes (7%)
• Class Partition (3%)
 • Students @ Cusp Class Partition will help push over.

Solo Assignments

Group Assignments

Closed Book

Re-Grades

• Limit of 1 week (After grades returned)
• Regrades may lead to a regrade
 • Points added!
 • Points deducted!
Session 01: Synch

Session 02: ASynch

Session 03: Hybrid
MS Students only!
Meets Wed 12-12:50
CIT 477

Class Partition (3%)
TopHat/Zoom polls used during class.
For Asynch --- Canvas questions will be assigned.
Textbook
Capstone Requirements

• Reminder: Capstone is for seniors

• Capstone == Additional work on several on the projects!
Skills Needed

• Ability to write and debug largish programs with processes
 • CS 32/33

• Ability to prove a theorem (or maybe two)
 • CS 22

• Willingness to learn a new programming language
 • You will be learning Go
Late Policy

• Each student has 4 free late days:
 • No more than 3 can be applied to any assignment
 • No more than 2 can be applied to the last assignment
 • For group projects, a late day (deducts from both students)

• Each day late == reduction of grade by 10% of total assignment points

• Exceptions: illness/Religious holiday
 • Illness: Provide note from health services/office of student life (Fill out Google form)
 • Religious holidays: Fill out Google form