Distributed Systems

Day 1: Introduction
Jan 24, 2019
Course Staff!

- **Instructor**
 - Theophilus Benson (tab@cs.brown.edu)

- **HTAs**
 - Joshua Pettiz (jpattiz@cs.brown.edu)
 - Martin Ma (zma17@cs.brown.edu)

- **TAs**
 - Ali Mir (am209@cs.brown.edu)
 - Brian Oppenheim (boppenhe@cs.brown.edu)
 - Galadriel Brady (gbrady1@cs.brown.edu)
 - Kerem Gurbey (kerem_gurbey@brown.edu)
 - Kristen McLean (kmclean1@cs.brown.edu)
 - Tina Lu (yuyang_lu@brown.edu)
 - William Riley (wriley1@cs.brown.edu)
 - Zhedi Zhang (zzhang57@cs.brown.edu)
About Me!

• Theophilus Benson
 • Office: CIT 327
 • Office Hours: Tues: 4-5pm, Wed:11-12am

• Research Interests:
 • Networking for Developing Regions
 • ML for Systems
 • Highly Available Infrastructures

• Non-Research Interests:
 • Climbing (being horrible at Climbing)

• Academic
 • PhD U of Wisconsin (2012)
 • PostDoc Princeton (2013)
 • Prof @ Duke (2013-2017)

• Industry
 • Microsoft (2008-2010)
 • Facebook (2014 & Now)
A *distributed system* is a system whose *components* are located on different networked *computers* ... The components interact with one another in order to achieve a *common goal*.
Why Do You Need a Distributed System?
IoT (Google Version)

https://cloud.google.com/iot-core/images/benefits-diagram.png
TensorFlow is a machine learning system that operates at **large scale** and in heterogeneous environments. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices.

TensorFlow Architecture

https://www.tensorflow.org/guide/extend/architecture
BitCoin: BFT

Byzantine Fault Tolerance: The Key for Blockchains

June 29, 2017, 12:03:44 PM EDT By Christopher Tozzi, Distributed

https://www.nasdaq.com/article/byzantine-fault-tolerance-the-key-for-blockchains-cm810058
Google Case Study

http://www.google.com
Google Case Study

- Goal: Rank webpages
 - Index and store large data
 - @2009: 4+ PB Filesystems

- Problem with one server
 - Can’t store all the data
 - Can’t process all the data

- @2013, 12 DCs around the world

http://www.google.com
Facebook Case Study

Connect with friends and the world around you on Facebook.

https://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919
Facebook Case Study

- Goal: Quickly show ads to users
 - Users are spread out around the world

- Problem: traffic can’t go faster than the speed of light

- @2007 FB, Opens a second DC

https://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919
Benefits of a Distributed System

• Performance
• Scalability
• Resource Sharing
• Fault Tolerance
This Class

Challenges:
- Availability
- Performance
- Consistency
- Security

Algorithms and designs to enable a set of components to behave as one during arbitrary failures modes

Node Failures Network Failures
Course Information
Distributed Systems Are Hard to Build!

Challenges:
- Availability
- Performance
- Consistency
- Coordination
- Security

Algorithms and designs to enable a set of components to behave as one during arbitrary failures modes.

- Node Failures
- Network Failures
Load Balancing: DHT (Sharding, Replication, Partitioning)

Ordering: Time (Global Snapshots)

Consensus: Agreement, Consistency, Coordination (Active/Passive/Lazy Replication, Transactions....)

Distributed Systems in the Field (Google, Amazon, Facebook, MongoDB)

Communication (Naming, RPC, TCP/UDP)

1 week

1 week

1 week

3 weeks

4 weeks

Note: This accounts for 10 of the 12 weeks. The other 2 weeks include: reviews, help sessions, and labs sessions on gRPC and debugging.
Communication
(Naming, RPC, TCP/UDP)

Load Balancing: DHT
(Sharding, Replication, Partitioning)

Ordering: Time
(Global Snapshots)

Consensus: Agreement, Consistency, Coordination
(Active/Passive/Lazy Replication, Transactions....)

Distributed Systems in the Field
(Google, Amazon, Facebook, MongoDB)

Proj 1: LiteMiner
Proj 2: Tapestry
Proj 3: Raft
Proj 4: Puddlestore
Textbook
Workload

• Homeworks (20%) (4 HWs)
• Projects (50%) (4 projects)
• Exams (30%)
 • Midterm (10%)
 • Final (20%)
• Class Partition (3% -- Bonus points)
 • Students @ Cusp Class Partition will help push over.

Re-Grades

• Limit of 1 week (After grades returned)
• Regrades may lead to a regrade
 • Points added!
 • Points deducted!
Skills Needed

• Ability to **write and debug largish programs** with processes
 • CS 32/33

• Ability to prove a theorem (or maybe two)
 • CS 22

• Willingness to learn a new **programming language**
 • You will be learning Go
Late Policy

• Each student has 4 free late days:
 • No more than 3 can be applied to any assignment
 • No more than 2 can be applied to the last assignment
 • For group projects, a late day (deducts from both students)

• Each day late == reduction of grade by 10% of total assignment points

• Exceptions: illness/Religious holiday
 • Illness: Provide note from health services/office of student life (Fill out Google form)
 • Religious holidays: Fill out Google form