CS 138: Ordering and Global State

L11
Last Class

• Time synchronization: NTP & PTP
• Virtual time
 – Logical clocks
 – Vector clocks
 – Total ordering with mutual exclusion
Central-Server Mutual Exclusion

Smart Object

May I?

a

May I?

b

May I?

c
Mutual Exclusion with Logical Clocks

• Requester
 – multicast request with timestamp
 – proceed when all other parties respond OK

• Receiver of request
 – if neither using nor waiting for resource, respond OK
 – if waiting for resource, respond OK if request’s timestamp is lower than own, otherwise queue request
 – if using resource, queue request

• When finished
 – respond OK to queued requests
Mutex Exclusion (1)

1: May I?
Mutex Exclusion (2)

Got It

a

b

OK

OK

c
Mutex Exclusion (3)

Got It
a

Waiting: 2
b

2: May I?

2: May I?

C
Mutex Exclusion (4)
Mutex Exclusion (5)
Mutex Exclusion (6)
Mutex Exclusion (7)

Got It

b

c:3

Waiting:3

C

a

a
Mutex Exclusion (8)

Waiting: 3

OK

b

c: 3

a

C

a

b
Mutex Exclusion (9)
Why Total Order is Important

“if waiting for resource, respond OK if request’s timestamp is lower than own, otherwise queue request”

b:2 < c:2
Total Order

- Tie-breaking rule
 - what if $T_i(a) = T_h(b)$?
 - a comes before b iff $i<h$

- Total order for all events in a distributed system

 "if waiting for resource, respond OK if request’s timestamp is lower than own, otherwise queue request"

 $b:2 < c:2$
Causal Ordering
Causally Ordered Multicast

- Application of vector clocks
 - the only events are sending messages
 - all messages are multicast to all

- Strategy
 - \(P_h \) receives multicast message \(m \) from \(P_i \)
 - deliver \(m \) to application when:
 - \(\text{timestamp}(m)[i] = \text{VC}_h[i] + 1 \)
 - next expected message from \(P_i \)
 - \(\text{timestamp}(m)[k] \leq \text{VC}_h[k] \), for all \(k \neq i \)
 - \(P_h \) has seen all events \(P_i \) had seen when it sent the message
Causally Ordered Multicast (1)

```
P_0  (1,0,0)  (1,1,0)
m_1
P_1  (1,1,0)  (1,0,0)  (1,1,0)
m_2
P_2  (0,0,0)  (1,0,0)  (1,1,0)
middleware
application
```
Causally Ordered Multicast (2)

Causal order != total order
- causal ordering = unrelated msgs delivered in any order
- total ordering = all messages delivered in precise order based on logical clock

\[\begin{align*}
P_0 & \rightarrow (1,0,0,0) \rightarrow (1,0,1,0) \\
P_1 & \rightarrow (1,0,0,0) \rightarrow (1,0,1,0) \\
P_2 & \rightarrow (0,0,1,0) \rightarrow (1,0,1,0) \\
P_3 & \rightarrow (0,0,1,0) \rightarrow (1,0,1,0)
\end{align*} \]
Global State
Failure Happens

• What to do about it?
 – you of course have everything backed up
 – so, restore the backups
Global State

• Your system consists of 100 nodes
 – each produces a snapshot of itself periodically
 – does some collection of these snapshots constitute a meaningful notion of “global state”?
Distributed Snapshots (1)

Is this snapshot consistent?
A cut is a **consistent cut** if, for each event e it contains, it also contains all events that happened before e.
Checkpointing

• Produce a distributed snapshot
 – how?

• Independent checkpointing
 – each process checkpoints itself periodically when convenient
 – to produce distributed snapshot
 - start with most recent checkpoints
 - roll back until consistent global checkpoint is achieved
Independent Checkpointing

Roll back
Domino Effect

- Initial state
- Checkpoint
- Failure

Time
Coping

- Take independent, periodic checkpoints, plus a few more
- or
- Produce a global snapshot on demand
Independent Checkpoints

• Goal
 – all checkpoints are “useful”
 - no need to roll back

• What are the conditions for checkpoints to for a consistent cut?
Causal Paths

Causal Paths

\[P_1 \rightarrow C_{1,0} \rightarrow C_{1,1} \rightarrow C_{1,2} \]
\[P_2 \leftrightarrow C_{2,0} \rightarrow C_{2,1} \rightarrow C_{2,2} \]
\[P_3 \rightarrow C_{3,0} \rightarrow C_{3,1} \rightarrow C_{3,2} \]

checkpoint interval

\[m1 \rightarrow m2 \rightarrow m3 \rightarrow m4 \]
Causal Paths

\[\begin{align*}
\text{P}_1 & \quad \text{C}_{1,0} \quad \text{C}_{1,1} \quad \text{checkpoint interval} \quad \text{C}_{1,2} \\
\text{P}_2 & \quad \text{C}_{2,0} \quad \text{C}_{2,1} \quad \text{C}_{2,2} \\
\text{P}_3 & \quad \text{C}_{3,0} \quad \text{C}_{3,1} \quad \text{C}_{3,2}
\end{align*} \]
Non-Causal Paths

C₁,₀ — C₁,₁ — C₁,₂

P₁ — m₁ — P₂

C₂,₀ — C₂,₁ — C₂,₂

P₂ — m₂ — P₃

C₃,₀ — C₃,₁ — C₃,₂

C₁,₀, C₁,₁, C₁,₂, C₂,₀, C₂,₁, C₂,₂, C₃,₀, C₃,₁, C₃,₂

checkpoint interval

m₁, m₂, m₃, m₄
Zigzag Paths

P_1

C_{1,0} \quad C_{1,1} \quad \text{checkpoint interval} \quad C_{1,2}

\begin{align*}
m_1 & \quad \text{m2} & \quad \text{m3} & \quad \text{m4} \\
C_{2,0} & \quad C_{2,1} & \quad C_{2,2} \\
C_{3,0} & \quad C_{3,1} & \quad C_{3,2}
\end{align*}
Zigzag Path Definition

• A zigzag path exists from $C_{p,i}$ to $C_{q,k}$ iff there are messages m_1, m_2, \ldots, m_n such that
 – m_1 is sent by process p after $C_{p,i}$
 – if m_h ($1 \leq h \leq n$) is received by process r, then m_{h+1} is sent by r in the same or a later checkpoint interval (although m_{h+1} may be sent before or after m_h is received), and
 – m_n is received by process q before $C_{q,k}$
Finding Causal Paths

- Use vector clocks
 - components are counts of checkpoints in each process
 - details may be an exercise ...
Domino Effect

- Initial state
- Checkpoint
- Failure

Time
Producing a Consistent Global Snapshot on Demand

• Process A wants all other processes to send it snapshots that together form a consistent cut (and thus a global snapshot)

• Can this be done?
Distributed Snapshot Algorithm

• Chandy & Lamport, 1985
 – algorithm to select a consistent cut
 – any process may initiate a snapshot at any time
 – processes can continue normal execution
 - send and receive messages
 – assumes:
 - no failures of processes & channels
 - strong connectivity
 • at least one path between each process pair
 - unidirectional, FIFO channels
 - reliable delivery of messages
Approach

• Snapshot consists of saved states of all nodes along with messages in transit
• For each pair of directly connected nodes A and B
 – must record messages sent before A saved its state but received after B saved its state
 – nodes send out special *marker* messages immediately after saving their states
Example: Sending

p₁ → m₃ → M → m₂ → m₁ → p₂

state
Example: Receiving

\[p_1 \xrightarrow{m_3} \xrightarrow{M} \xrightarrow{m_2} m_1 \xrightarrow{p_2} \]

\[\text{state} \]

\[\text{state} \]
Another Example: part 1
Another Example: part 2
Another Example: part 3

p_1 → state → p_3 → state → p_2

m_2, M, m_3, M, M, m_1
Another Example: part 4
Snapshot Rules

• **Marker receiving rule for process** p_i

 On p_i’s receipt of a *marker* message over channel c:
 \[
 \text{if (} p_i \text{ has not yet recorded its state) }
 \]
 it records its state
 it records the state of c as the empty sequence
 it turns on recording of messages arriving over other channels

 \[\text{else}\]
 p_i records the state of c as the set of messages it has received over c since it saved its state and before it received the marker over c

• **Marker sending rule for process** p_i

 After p_i has recorded its state, for each outgoing channel c:
 \[
 p_i \text{ sends one marker message over } c \text{ (before it sends any other messages over } c)\]
Termination

• Process P has completed its part of the algorithm when it has processed markers on all input channels

• It sends its saved local state and channel histories to the initiator
 – the intent is that collection of local states form consistent cut
 - channel histories are the messages in transit at time of cut
Analysis

• Does it find a consistent cut?
 – if so, then for any P_a and P_b, if m is a message sent from P_a to P_b, then if $\text{recv}(m)$ is in the cut, so is $\text{send}(m)$
 - i.e., if $\text{recv}(m)$ occurred before P_b recorded its state, then $\text{send}(m)$ occurred before P_a recorded its state
 – stronger statement: if for any P_a and P_b, if e_a and e_b are events in P_a and P_b, such that e_a happens before e_b ($e_a \rightarrow e_b$), then if e_b is in the cut, so is e_a
 - i.e., if e_b occurred before P_b recorded its state, then e_a occurred before P_a recorded its state
Proof

• Assume no: P_a recorded its state before e_a occurred (e_b is in the cut, but e_a is not)
 – since $e_a \rightarrow e_b$, there was some sequence of messages m_1, m_2, \ldots, m_h that brought on $e_a \rightarrow e_b$
 – since P_a recorded its state before e_a occurred, it sent marker messages out on all its outgoing channels before transmitting m_1
 – since the channels are FIFO, a marker reached P_b before m_h
 – but then P_b would have recorded its state before e_a
 – but then e_b would not have been in the cut
 - contradiction
More Analysis

• Snapshot taken isn’t necessarily a state that actually happened!
 – but it could have happened …
• If distributed system deadlocks, no distributed snapshot