CSCI 127
Introduction to Database Systems

Integrity Constraints and Functional Dependencies
Integrity Constraints

Purpose:

Prevent semantic inconsistencies in data

e.g.:

<table>
<thead>
<tr>
<th>cname</th>
<th>svngs</th>
<th>check</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>100</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

total ≠ savings + checking

e.g.:

<table>
<thead>
<tr>
<th>cname</th>
<th>bname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>Waltham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bname</th>
<th>bcity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dtn</td>
<td>Bkln</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

No entry for Waltham
Integrity Constraints

What Are They?

- *Predicates on the database*
- *Must always be true (checked whenever db gets updated)*

The 4 Kinds of IC’s:

1. **Key Constraints (1 table)**

e.g.: 2 accts can’t share same acct_no

2. **Attribute Constraints (1 table)**

e.g.: accts must have nonnegative balance

3. **Referential Integrity Constraints (2 tables)**

e.g.: bnames associated with loans must be names of real branches

4. **Global Constraints (n tables)**

e.g.: all loans must be carried by at least 1 customer with a savings account
Key Constraints

Idea:

Specifies that a relation is a set, not a bag

SQL Examples:

1. Primary Key

 CREATE TABLE branch(
 bname CHAR(15) PRIMARY KEY,
 bcity CHAR (50),
 assets INTEGER);

 OR

 CREATE TABLE depositor(
 cname CHAR(15),
 acct_no CHAR(5),
 PRIMARY KEY (cname, acct_no));
Key Constraints (cont.)

Idea:

Specifies that a relation is a set, not a bag

SQL Examples (cont.):

2. **Candidate Key**

```sql
CREATE TABLE customer(
  ssn CHAR(19),
  cname CHAR(15),
  address CHAR(30),
  city CHAR(10),
  PRIMARY KEY (ssn),
  UNIQUE (cname, address, city));
```
Effect of SQL Key Declarations

\texttt{PRIMARY} (A_1, \ldots, A_n) \texttt{OR UNIQUE} (A_1, \ldots, A_n)

1.

Insertions:

\textit{Check if inserted tuple has same values for} A_1, \ldots, A_n \textit{as any previous tuple. If found, reject insertion}

2.

Updates to any of A_1, \ldots, A_n:

\textit{Treat as insertion of entire tuple}
Key Constraints (cont.)

Effect of SQL Key Declarations (cont.)

`PRIMARY (A_1, ..., A_n) OR UNIQUE (A_1, ..., A_n)`

Primary vs. Unique (candidate):

1. One primary key per table.
 Several unique keys allowed.

2. Only primary key can be referenced by "foreign key"
 (Referential integrity)

3. DBMS may treat these differently
 (e.g.: Putting index on primary key)
Attribute Constraints

Idea:

- Attach constraints to value of attribute
- “Enhanced” type system
 (e.g.: > 0 rather than integer)

In SQL:

1. NULL

2. CHECK

CREATE TABLE branch(
 bname CHAR(15) NOT NULL
)

CREATE TABLE depositor(
 ...
 balance integer NOT NULL
 CHECK (balance ≥ 0)
 ...
)

⇒ affect insertions, updates in affected columns
Attributes Constraints (cont.)

Domains:

Can associate constraints with DOMAINS rather than attributes

e.g.: Instead of:

```
CREATE TABLE depositor(
    ...
    balance integer NOT NULL
    CHECK (balance ≥ 0)
    ...
)
```

One can write...
Attribute Constraints (cont.)

Domains (cont):

```
CREATE DOMAIN bank-balance integer(
    CONSTRAINT not-overdrawn
    CHECK (value ≥ 0),
    CONSTRAINT not-null-value
    CHECK (value NOT NULL)
)

CREATE TABLE depositor(
    ...,
    balance bank-balance
    ...,
)
```

Q: *What are the advantages of associating constraints w/ domains?*
Attribute Constraints (cont.)

Advantages of Associating Constraints with Domains:

1. *Can avoid repeating specification of same constraint for multiple columns*

2. *Can name constraints*

   ```
   CREATE DOMAIN bank-balance integer(
       CONSTRAINT not-overdrawn
       CHECK (value ≥ 0),
       CONSTRAINT not-null-value
       CHECK (value NOT NULL))
   ```

 Allows One To:

1. *Add or remove:*

   ```
   ALTER DOMAIN bank-balance
   ADD CONSTRAINT capped
   (CHECK value ≤ 10000)
   ```

2. *Report better errors (know which constraint violated)*
Referential Integrity Constraints

Idea:

Prevent “dangling tuples” (e.g.: *A loan with* \(bname \), Waltham *when no Waltham tuple in* \(branch \))

Illustrated:

Referential Integrity:

Ensure that: *Foreign Key* \(\rightarrow \) *Primary Key* value

Note: Need not ensure (i.e.: *Not all branches must have loans*)
Referential Integrity Constraints

Q: Why are dangling references bad?

A: Think E/R Diagrams. In what situation do we create table A (with column containing keys of table B)

1. A represents a relationship with B, or is an entity set with an n:1 relationship with B
2. A is a weak entity dominated by B (d.r. violates weak entity condition)
3. A is a specialization of B (dang.ref. violates inheritance tree)
Referential Integrity Constraints

Insertions, updates of referencing relation

Ensure no tuples in referencing relation left dangling

Deletions, updates of referenced relation

Ensure no tuples in referencing relation left dangling

In SQL, Declare:

```sql
CREATE TABLE branch(
    bname CHAR(15) PRIMARY KEY
)

CREATE TABLE loan(
....
FOREIGN KEY bname REFERENCES branch)
```
Referential Integrity Constraints

Q: What happens to tuples left dangling as a result of deletion/update of referenced relation?

A: 3 Possibilities

1. Reject deletion/update
2. Set $t_i[c]$ and $t_j[c] = \text{NULL}$
3. Propagate deletion/update

DELETE: delete t_i, t_j
UPDATE: set t_i

What happens when we try to delete this tuple?
Referential Integrity Constraints

Resolving Dangling Tuples

In SQL:

```
CREATE TABLE A (... 
    FOREIGN KEY C REFERENCES B <action> 
    ...) 
```
Referential Integrity Constraints

Resolving Dangling Tuples (cont.)

Deletion:

1. *(Left blank): Deletion/update rejected*

2. **ON DELETE SET NULL** / **ON UPDATE SET NULL**

 sets $t_i[c] = \text{NULL}, \ t_j[c] = \text{NULL}$

3. **ON DELETE CASCADE**

 delete $t_i, \ delete \ t_j$

 ON UPDATE CASCADE

 sets $t_i[c], \ t_j[c]$ *to new Key value*
Global Constraints

Idea:

1. **Single relation (constraint spans multiple columns)**

 e.g.: CHECK (total = svngs + check)

 declared in CREATE TABLE for relation

2. **Multiple relations**

 CREATE ASSERTIONS
Global Constraints (cont.)

SQL Example (cont.):

Multiple relations: Every loan has a borrower with a savings account

CHECK (NOT EXISTS (SELECT * FROM loan AS l WHERE NOT EXISTS (SELECT * FROM borrower AS b, depositor AS d, account AS a, WHERE b.cname = d.cname AND d.acct_no = a.acct_no AND l.lno = b.lno))))

SELECT * FROM loan AS l WHERE <non-conforming loan?>
Global Constraints (cont.)

SQL Example (cont.):

Multiple relations: Every loan has a borrower with a savings account (cont.)

Problem:

With which table’s definition does this go? (loan?, depositor?, ...)

A: *None of the above*

CREATE ASSERTION loan-constraint
CHECK (NOT EXISTS...)

Checked with EVERY DB update! VERY EXPENSIVE...
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>(PRIMARY KEY,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIQUE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMARY KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
<tr>
<td>Attribute Constraints</td>
<td>CREATE TABLE CREATE DOMAIN (NOT NULL, CHECK)</td>
<td>Insertions, updates</td>
<td>Cheap</td>
</tr>
</tbody>
</table>
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMARY KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
<tr>
<td>Attribute Constraints</td>
<td>CREATE TABLE CREATE DOMAIN (NOT NULL, CHECK)</td>
<td>Insertions, updates</td>
<td>Cheap</td>
</tr>
</tbody>
</table>
| **Referential Integrity** | Table tag (FOREIGN KEY REFERENCES ...) | 1. Insertions into referencing relation
2. Updates of referencing relation of relevant att’s
3. Deletions from referenced relations
4. Updates of referenced relations | 1,2: Like key constraints. Another reason to index/sort on primary keys
3,4: Depends on
a. update/delete policy chosen
b. Existence of indexes on foreign keys |
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMARY KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
<tr>
<td>Attribute Constraints</td>
<td>CREATE TABLE CREATE DOMAIN (NOT NULL, CHECK)</td>
<td>Insertions, updates</td>
<td>Cheap</td>
</tr>
</tbody>
</table>
| **Referential Integrity** | (FOREIGN KEY REFERENCES ...) | 1. Insertions into referencing relation
2. Updates of referencing relation of relevant att’s
3. Deletions from referenced relations
4. Updates of referenced relations | 1,2: Like key constraints. Another reason to index/sort on primary keys
3,4: Depends on
a. update/delete policy chosen
b. Existence of indexes on foreign keys |
| **Global Constraints** | Outside tables (create assertion) | 1. For single relation constraint, with insertions, updates of relevant att’s
2. For assertions, with every database modification | 1. Cheap
2. Very Expensive |

CSCI 127: Introduction to Database Systems
Functional Dependencies

An Example:

\[
\text{loan-info} =
\]

<table>
<thead>
<tr>
<th>bname</th>
<th>lno</th>
<th>cname</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dntn</td>
<td>L-17</td>
<td>Jones</td>
<td>1000</td>
</tr>
<tr>
<td>Dntn</td>
<td>L-17</td>
<td>Williams</td>
<td>1000</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-23</td>
<td>Smith</td>
<td>1000</td>
</tr>
<tr>
<td>Perry</td>
<td>L-15</td>
<td>Hayes</td>
<td>1500</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-23</td>
<td>Johnson</td>
<td>1000</td>
</tr>
</tbody>
</table>

Observe:

Tuples with the same value for lno will always have the same value for amt

We write: lno \(\rightarrow\) amt

\(lno\) “determines” \(amt\), or \(amt\) is “functionally determined” by \(lno\)

True or False?

- \(amt \rightarrow lno\)?
- \(lno \rightarrow cname\)?
- \(lno \rightarrow lno\)?
- \(bname \rightarrow lno\)?

Can’t always decide by looking at populated db’s
Functional Dependencies

In general:

\[A_1, \ldots, A_n \rightarrow B \]

Informally:

If 2 tuples “agree” on their values for \(A_1, \ldots, A_n \), they will also agree on their values for \(B \)

Formally:

\[\forall t, u \ (t[A_1] = u[A_1] \land t[A_2] = u[A_2] \land \ldots \land t[A_n] = u[A_n] \Rightarrow t[B] = u[B]) \]
Functional Dependencies

Another Example:

Drinkers

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>likes</th>
<th>lmanf</th>
<th>fave</th>
<th>fmanf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>WS</td>
<td>Bud</td>
<td>AB</td>
<td>Duff</td>
<td>SB</td>
</tr>
<tr>
<td>Homer</td>
<td>WS</td>
<td>Duff</td>
<td>SB</td>
<td>Duff</td>
<td>SB</td>
</tr>
<tr>
<td>Apu</td>
<td>ES</td>
<td>Bud</td>
<td>AB</td>
<td>Bud</td>
<td>AB</td>
</tr>
</tbody>
</table>

What are the FD’s?

```
likes → lmanf
fave → fmanf
name → fave
name → addr (?)
```
Back to Global Integrity Constraints

How Do We Decide What Constraints to Impose?

Consider Drinkers (name, addr, likes, lmanf, fave, fmanf) with FD’s: name → addr, ...

Q: How do we ensure that name → addr?

A: CREATE ASSERTION name-addr
 CHECK (NOT EXISTS
 (SELECT *
 (SELECT *
 FROM Drinkers AS d₁, Drinkers AS d₂
 WHERE ?))

? ≡ d₁.name = d₂.name AND d₁.addr <> d₂.addr
Back to Functional Dependencies

How to derive them?

1. *Key Constraints*
 (e.g.: \texttt{bname} a key for \texttt{branch})

\[\text{Therefore: } \begin{align*} \text{bname} & \rightarrow \text{bname} \\ \text{bname} & \rightarrow \text{city} \end{align*} \]

\[\text{will instead write: } \begin{align*} \text{bname} & \rightarrow \text{bname bcity assets} \\ \text{bname} & \rightarrow \text{assets} \end{align*} \]

Q: Define “Super Keys” in terms of FD’s

A: Any set of attributes in a relation that functionally determines all attributes in the relation

Q: Define “Candidate Key” in terms of FD’s

A: Any super key such that the removal of any attribute leaves a set that does not functionally determine all attributes
Functional Dependencies

How to Derive Them?

1. *Key Constraints*
2. *n:1 relationships*

 e.g.: beer \rightarrow manufacturer, beer \rightarrow price
3. *Laws of Physics*

 e.g.: time room \rightarrow course
4. *Trial-and-error*

Given $R = (A, B, C)$, try each of the following to see if they make sense.

- $A \rightarrow B$
- $C \rightarrow A$
- $BC \rightarrow A$
- $A \rightarrow C$
- $C \rightarrow B$
- $B \rightarrow A$
- $AB \rightarrow C$
- $B \rightarrow C$
- $AC \rightarrow B$

What about?

Just write: “... plus all of the trivial dependencies”
2. Avoiding the Expense

Recall: name \rightarrow addr preserved by

CHECK (NOT EXISTS
 (SELECT *
 FROM Drinkers AS d$_1$, Drinkers AS d$_2$
 WHERE d$_1$.name = d$_2$.name AND d$_1$.addr <> d$_2$.addr))

Q: Is it necessary to have an assertion for every FD?

A: Luckily, no. Can preprocess FD set
 Some FD’s can be eliminated
 Some FD’s can be combined
Functional Dependencies

Combining FD’s:

\[a. \text{name }\rightarrow\text{addr} \]
CREATE ASSERTION name-addr
CHECK (NOT EXISTS
(SELECT *
FROM Drinkers AS d_1, Drinkers AS d_2
WHERE d_1.name = d_2.name AND d_1.addr <> d_2.addr))

\[b. \text{name }\rightarrow\text{fave} \]
CREATE ASSERTION name-fave
CHECK (NOT EXISTS
(SELECT *
FROM Drinkers AS d_1, Drinkers AS d_2
WHERE d_1.name = d_2.name AND d_1.fave <> d_2.fave))
Combining FD’s (cont.):

\[
\text{Combine into: } \text{name} \rightarrow \text{addr fave}
\]

CREATE ASSERTION name-addr
CHECK (NOT EXISTS(SELECT *
FROM Drinkers AS d_1, Drinkers AS d_2
WHERE d_1.name = d_2.name AND ?))

? \equiv (d_1.addr \not= d_2.addr) \text{ OR } (d_1.fave \not= d_2.fave)
Functional Dependencies

Determining Unnecessary FD’s

Consider: \(\text{name} \rightarrow \text{name} \)

```sql
CREATE ASSERTION name-name
CHECK (NOT EXISTS
(SELECT *
FROM Drinkers AS d1, Drinkers AS d2
WHERE d1.name = d2.name AND d1.name <> d2.name))
```

Cannot possibly be violated!
Functional Dependencies

Note:

\[X \rightarrow Y \text{ s.t. } Y \supseteq X \text{ is a “trivial dependency”} \]
\[(true, \text{regardless of attributes involved}) \]

Moral:

Don’t create assertions for trivial dependencies
Functional Dependencies

Determining Unnecessary FD’s

Even non-trivial FD’s can be unnecessary

e.g.:

1. name → fave

 CREATE ASSERTION name-fave
 CHECK (NOT EXISTS
 SELECT *
 FROM Drinkers AS d1, Drinkers AS d2
 WHERE d1.name = d2.name AND d1.fave <> d2.fave)

2. fave → fmanf

 CREATE ASSERTION fave-fmanf
 CHECK (NOT EXISTS
 SELECT *
 FROM Drinkers AS d1, Drinkers AS d2
 WHERE d1.fave = d2.fave AND d1.fmanf <> d2.fmanf)
Determining Unnecessary FD’s (cont.)

Even non-trivial FD’s can be unnecessary (cont.)

e.g.:

3. \(\text{name} \rightarrow \text{fmanf} \)

\[
\text{CREATE ASSERTION name-fmanf}
\text{CHECK (NOT EXISTS SELECT * FROM Drinkers AS d_1, Drinkers AS d_2 WHERE d_1.name = d_2.name AND d_1.fmanf <> d_2.fmanf)}
\]

Note: If 1 and 2 succeed, 3 must also
Functional Dependencies

Using FD’s to Determine Global IC’s:

Step 1: Given schema $R = \{ A_1, \ldots, A_n \}$

Use key constraints, n:1 relationships, laws of physics and trial-and-error to determine an initial FD set, \mathbb{F}

Step 2:

Use FD elimination techniques to generate an alternative (but equivalent) FD set, \mathbb{F}'

Step 3:

Write assertions for each $\mathbb{F} \in \mathbb{F}'$ (for now)
Functional Dependencies

Using FD’s to Determine Global IC’s (cont.):

Issues:

1. How do we guarantee that $F = F'$?

 A: Closures

2. How do we find a “minimal” $F = F'$?

 A: Canonical cover algorithm
Example:

Suppose:

\[R = \{A, B, C, D, E, H\} \text{ and we determine that:} \]

\[F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AD \rightarrow H, D \rightarrow B\} \]

Then we determine the canonical cover of \(F \):

\[F_c = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\} \]

ensuring that \(F \) and \(F_c \) are equivalent

Note:

\(F \) requires 5 assertions

\(F_c \) requires 3 assertions
Functional Dependencies

Equivalence of FD Sets:

FD sets \(F, G \) are equivalent if they *imply* the same set of FD’s

e.g.:

\[
\begin{align*}
 A &\rightarrow B \\
 B &\rightarrow C
\end{align*}
\]

Implies \(A \rightarrow C \)

Equivalence usually expressed in terms of closures

Closures:

For any FD set, \(F \), \(F^+ \) *is the set of all FD’s implied by* \(F \).

Can calculate in 2 ways:

1. Attribute closures
2. Armstrong’s axioms

Both techniques are tedious → we will do only for toy examples

Note: \(F \) equivalent to \(G \) if and only if \(F^+ = G^+ \)
Functional Dependencies

Shorthand:

\[C \rightarrow BD \quad \text{same as} \quad C \rightarrow B \]

Be Careful!

\[AB \rightarrow C \quad \text{not the same as} \quad A \rightarrow C \]
\[B \rightarrow C \quad \text{not true} \]
Attribute Closures

Given:

\[R = \{ A, B, C, D, E, H \} \]
\[F = \{ A \rightarrow BC, \]
\[B \rightarrow CE, \]
\[A \rightarrow E, \]
\[AC \rightarrow H, \]
\[D \rightarrow B \} \]

Q: What is the closure of CD (i.e., CD⁺)?

A: The set of attributes that can be determined from CD.
Q: What is the closure of CD (i.e., CD^+)?

A: Algorithm `attr-closure` (X: set of attributes)

```
result ← X
repeat until stable
  for each FD in $F$, $Y \rightarrow Z$, do
    if $Y \subseteq result$ then
      result ← result $\cup Z$
```

e.g.: `attr-closure` (CD)

\[
\begin{array}{|c|c|}
\hline
\text{Iteration} & \text{Result} \\
\hline
0 & CD \\
\hline
\end{array}
\]

$R = \{A, B, C, D, E, H\}$

$F = \{A \rightarrow BC,$
\begin{align*}
B & \rightarrow CE, \\
A & \rightarrow E, \\
AC & \rightarrow H, \\
D & \rightarrow B\}
\end{align*}$
Q: What is the closure of $CD (CD^+)$?

A: Algorithm attr-closure (X: set of attributes)

 result $\leftarrow X$

 repeat until stable

 for each FD in $F, Y \rightarrow Z$, do

 if $Y \subseteq$ result then

 result \leftarrow result \cup Z

\textit{e.g.:} attr-closure (CD)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CD</td>
</tr>
<tr>
<td>1</td>
<td>CDB</td>
</tr>
</tbody>
</table>

$R = \{A, B, C, D, E, H\}$

$F = \{A \rightarrow BC,$
 $B \rightarrow CE,$
 $A \rightarrow E,$
 $AC \rightarrow H,$
 $D \rightarrow B\}$
Q: What is the closure of $CD (CD^+)$?

A: Algorithm attr-closure (X: set of attributes)

result $\leftarrow X$

repeat until stable

for each FD in F, $Y \rightarrow Z$, do

if $Y \subseteq$ result then

result \leftarrow result $\cup Z$

\hspace{1cm}

\textit{e.g.:} attr-closure (CD)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CD</td>
</tr>
<tr>
<td>1</td>
<td>CDB</td>
</tr>
<tr>
<td>2</td>
<td>CDBE</td>
</tr>
</tbody>
</table>

$R = \{A, B, C, D, E, H\}$

$F = \{A \rightarrow BC,$

$B \rightarrow CE,$

$A \rightarrow E,$

$AC \rightarrow H,$

$D \rightarrow B\}$
Attribute Closures

Q: What is ACD^+?
 A: $ACD^+ \rightarrow R$

Q: How can you determine if ACD is a super key?
 A: *It is if* $ACD^+ \rightarrow R$

Q: How can you determine if ACD is a candidate key?
 A: *It is if:* $ACD^+ \rightarrow R$, and
 None of ($AC^+ \rightarrow R$, $AD^+ \rightarrow R$, $CD^+ \rightarrow R$) are true.
Using Attribute Closures To Determine FD Set Closures

Given:

\[F = \{ A \rightarrow BC, \quad B \rightarrow CE, \quad A \rightarrow E, \quad AC \rightarrow H, \quad D \rightarrow B \} \]

\[F^+ = \{ A \rightarrow A^+, \quad B \rightarrow B^+, \quad C^+ , \quad D \rightarrow D^+, \quad E \rightarrow \} \]

To Decide if \(F, G \) Are Equivalent:

1. Compute \(F^+ \)
2. Compute \(G^+ \)
3. Is \(1 = 2 \)?

Expensive:

\(F^+ \) has 63 rules (in general: \(O(2^{|R|}) \) rules)
A. Fundamental Rules (W, X, Y, Z: sets of attributes)

1. **Reflexivity**

 If \(Y \subseteq X \) then \(X \rightarrow Y \)

2. **Augmentation**

 If \(X \rightarrow Y \) then \(WX \rightarrow WY \)

3. **Transitivity**

 If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)
B. Additional rules (can be proved from 1 through 3)

4. **Union**

 If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

5. **Decomposition**

 If \(X \rightarrow YZ \) then \(X \rightarrow Y \) and \(X \rightarrow Z \)

6. **Pseudotransitivity**

 If \(X \rightarrow Y \) and \(WY \rightarrow Z \), then \(WX \rightarrow Z \)
FD Closures Using Armstrong’s Axioms

Given:

\[F = \{ A \rightarrow BC, \quad (1) \]
\[B \rightarrow CE, \quad (2) \]
\[A \rightarrow E, \quad (3) \]
\[AC \rightarrow H, \quad (4) \]
\[D \rightarrow B } \quad (5) \]

Exhaustively Apply Armstrong’s Axioms to Generate \(F^+ \):

\[F^+ = F \subseteq \]

1. \(\{(6) A \rightarrow B, \quad (7) A \rightarrow C\} \)
 \[\quad \text{... decomposition on (1)} \]
2. \(\{(8) A \rightarrow CE\} \)
 \[\quad \text{... transitivity on (6),(2)} \]
3. \(\{(9) B \rightarrow C, \quad (10) B \rightarrow E\} \)
 \[\quad \text{... decomposition on (2)} \]
4. \(\{(11) A \rightarrow C, \quad (12) A \rightarrow E\} \)
 \[\quad \text{... decomposition on (8)} \]
5. \(\{(13) A \rightarrow H\} \)
 \[\quad \text{... pseudotransitivity on (1),(4)} \]

...
Functional Dependencies

Our Goal:

Given FD set, F, find an alternative FD set, G, that is:

1. Smaller
2. Equivalent

Bad News:

Testing $F \equiv G$ ($F^+ = G^+$) is computationally expensive

Good News: Canonical Cover Algorithm (CCA)

Given FD set, F, CCA finds minimal FD set equivalent to F

minimal: can’t find another equivalent FD set with fewer FD’s
Canonical Cover Algorithm

Given:

\[F = \{ A \rightarrow BC, \quad B \rightarrow CE, \quad A \rightarrow E, \]
\[\quad AC \rightarrow H, \quad D \rightarrow B \} \]

Another Example:

\[F = \{ A \rightarrow B, \quad B \rightarrow C, \quad A \rightarrow B, \quad AB \rightarrow C, \quad AC \rightarrow D \} \]

Determine canonical cover of \(F \):

\[F_c = \{ A \rightarrow BH, \quad B \rightarrow CE, \quad D \rightarrow B \} \]

\[F_c = F \]

No \(G \) that is equiv. to \(F \) is smaller than \(F_c \)

CSCI1270: Introduction to Database Systems
Canonical Cover Algorithm

Basic Algorithm

ALGORITHM canonical-cover (X: FD Set)
BEGIN

REPEAT UNTIL STABLE

1. Where possible, apply UNION rule (A’s Axioms)
 (e.g.: \(A \rightarrow BC \), \(A \rightarrow CD \) becomes \(A \rightarrow BCD \))

2. Remove “extraneous attributes” from each FD
 (e.g.: \(AB \rightarrow C \), \(A \rightarrow B \) becomes \(A \rightarrow B, B \rightarrow C \)
 i.e.: A is extraneous in \(AB \rightarrow C \))

END
Extraneous Attributes

1. Extraneous in RHS?

 e.g.: Can we replace \(A \rightarrow BC \) *with* \(A \rightarrow C \)?
 (i.e.: Is B extraneous in \(A \rightarrow BC \) ?)*

2. Extraneous in LHS?

 e.g.: Can we replace \(AB \rightarrow C \) *with* \(A \rightarrow C \)?
 (i.e.: Is B extraneous in \(AB \rightarrow C \) ?)*

Simple (but expensive) test:

1. Replace \(A \rightarrow BC \) *(or* \(AB \rightarrow C \)) *with* \(A \rightarrow C \) *in* \(F \)

 Define \(F_2 = F - \{ A \rightarrow BC \} \) \(\equiv \) \(\{ A \rightarrow C \} \) *OR*

 \(F_2 = F - \{ AB \rightarrow C \} \) \(\equiv \) \(\{ A \rightarrow C \} \)

2. Test: Is \(F_2^+ = F^+ ? \) *If yes, then B was extraneous*
Extraneous Attributes

A. RHS: Is B extraneous in A → BC?

\[\text{Step 1: } F_2 = F - \{ A \rightarrow BC \} \subseteq \{ A \rightarrow C \} \]

\[\text{Step 2: } F^+ = F_2^+? \]

To simplify step 2, observe that \(F_2^+ \subseteq F^+ \)
(i.e.: no new FD’s in \(F_2^+ \))

Why? \textit{Have effectively removed A → B from F}

When is \(F^+ = F_2^+? \)

A: \textit{When} \((A \rightarrow B) \in F_2^+ \) (i.e., when you can deduce it
from other FD’s in F2)

Idea: \textit{If} \(F_2^+ \) includes: \(A \rightarrow B \) and \(A \rightarrow C \),
then it includes \(A \rightarrow BC \)
Extraneous Attributes

B. LHS: Is \(B \) extraneous in \(AB \rightarrow C \)?

Step 1: \(F_2 = F - \{ AB \rightarrow C \} U \{ A \rightarrow C \} \)

Step 2: \(F^+ = F_2^+ ? \)

To Simplify step 2, observe that \(F^+ \supseteq F_2^+ \)

(i.e.: there may be new FD’s in \(F_2^+ \))

Why?

\[A \rightarrow C \text{ “implies” } AB \rightarrow C. \]

Thus, all FD’s in \(F^+ \) also in \(F_2^+ \).

But \(AB \rightarrow C \) does not “imply” \(A \rightarrow C \).

Thus, all FD’s in \(F_2^+ \), not necessarily in \(F^+ \).

When is \(F^+ = F_2^+ ? \)

A: When \((A \rightarrow C) \in F^+ \)

Idea: *If \((A \rightarrow C) \in F^+ \), then it will include all FD’s of \(F_2^+ \).*
Extraneous Attributes

A. RHS:

Given \(F = \{ A \rightarrow BC, \ B \rightarrow C \} \),

is \(C \) extraneous in \(A \rightarrow BC \)?:

Why or why not?

A: Yes, because

\[(A \rightarrow C) \in \{ A \rightarrow B, \ B \rightarrow C \}^+ \]

Proof:

1. \(A \rightarrow B \) Given
2. \(B \rightarrow C \) Given
3. \(A \rightarrow C \) transitivity, (1) and (2)

Use Armstrong’s axioms in proof
ALGORITHM canonical-cover (X: FD Set)
BEGIN

REPEAT UNTIL STABLE
1. Where possible, apply UNION rule (A’s Axioms)

2. Remove all extraneous attributes:
 a. Test if B extraneous in $A \rightarrow BC$

 (B extraneous if $(A \rightarrow B) \in (F - \{A \rightarrow BC\} U \{A \rightarrow C\})^+ = F_2^+$)

 b. Test if B extraneous in $AB \rightarrow C$

 (B extraneous if $(A \rightarrow C) \in F^+$)

END
Example: Determine the canonical cover of

\[F = \{ A \rightarrow BC, \ B \rightarrow CE, \ A \rightarrow E \} \]

Iteration 1:

\begin{enumerate}
\item \[F = \{ A \rightarrow BCE, \ B \rightarrow CE \} \]
\item Must check for up to 5 extraneous attributes
 \begin{itemize}
 \item B extraneous in \(A \rightarrow BCE \)? No
 \item C extraneous in \(A \rightarrow BCE \)?

 Yes: \((A \rightarrow C) \in \{ A \rightarrow BE, B \rightarrow CE \}^+ \)
 \begin{enumerate}
 \item A \rightarrow BE Given
 \item A \rightarrow B Decomposition (1)
 \item B \rightarrow CE Given
 \item B \rightarrow C Decomposition (3)
 \item A \rightarrow C Trans (2,4)
 \end{enumerate}
 \end{itemize}
 \item E extraneous in \(B \rightarrow CE \)? ...
\end{enumerate}
Canonical Cover Algorithm

Example (cont.): \(F = \{ A \rightarrow BC, B \rightarrow CE, A \rightarrow E \} \)

Iteration 1:

a. \(F = \{ A \rightarrow BCE, B \rightarrow CE \} \)

b. Extraneous atts:

- \(B \) extraneous in \(A \rightarrow BCE \)? \(No \)
- \(C \) extraneous in \(A \rightarrow BCE \)? \(Yes... \)
- \(E \) extraneous in \(A \rightarrow BCE \)?

 Yes: \((A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE\}^+\)
 1. \(A \rightarrow B \) Given
 2. \(B \rightarrow CE \) Given
 3. \(B \rightarrow E \) Decomposition (2)
 4. \(A \rightarrow E \) Trans \((1,3)\)

- \(E \) extraneous in \(B \rightarrow CE \)? \(No \)
- \(C \) extraneous in \(B \rightarrow CE \)? \(No \)
Canonical Cover Algorithm

Example (cont.): \(F = \{ A \rightarrow BC, \ B \rightarrow CE, \ A \rightarrow E \} \)

Iteration 1:

a. \(F = \{ A \rightarrow BCE, \ B \rightarrow CE \} \)
b. Extraneous atts:
 - \(B \) extraneous in \(A \rightarrow BCE \)? No
 - \(C \) extraneous in \(A \rightarrow BCE \)? Yes...
 - \(E \) extraneous in \(A \rightarrow BE \)? Yes...
 - \(E \) extraneous in \(B \rightarrow CE \)? No
 - \(C \) extraneous in \(B \rightarrow CE \)? No

Iteration 2:

a. \(F = \{ A \rightarrow B, \ B \rightarrow CE \} \)
b. Extraneous atts:
 - \(E \) extraneous in \(B \rightarrow CE \)? No
 - \(C \) extraneous in \(B \rightarrow CE \)? No

DONE!
Functional Dependencies So Far...

1. Canonical Cover Algorithm

 Result \((F_c)\) guaranteed to be minimal FD set equivalent to \(F\)

2. Closure Algorithms

 a. Armstrong’s Axioms:
 More common use: test for extraneous atts in CC algorithm

 b. Attribute closure:
 More common use: test if set of atts is a super key

3. Purpose

 Minimize cost of global integrity constraints
 So far: min gic’s = \(|F_c|\)
Functional Dependencies

So Far, have used for:

1. Determining global integrity constraints
2. Minimizing global integrity constraints (canonical cover)
3. Deciding if some attribute set is a key (attribute closure)

Next: Influencing schema design (normalization)