CSCI 127
Introduction to Database Systems

Integrity Constraints and
Functional Dependencies
Integrity Constraints

Purpose:

Prevent semantic inconsistencies in data

e.g.:

<table>
<thead>
<tr>
<th>cname</th>
<th>svngs</th>
<th>check</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>100</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

total ≠ savings + checking

<table>
<thead>
<tr>
<th>cname</th>
<th>bname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>Waltham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bname</th>
<th>bcity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dntn</td>
<td>Bkln</td>
</tr>
</tbody>
</table>

No entry for Waltham
Integrity Constraints

What Are They?

- *Predicates on the database*
- *Must always be true (checked whenever db gets updated)*

The 4 Kinds of IC’s:

1. *Key Constraints (1 table)*

e.g.: 2 *accts* can’t share same *acct_no*

2. *Attribute Constraints (1 table)*

e.g.: *accts* must have nonnegative balance

3. *Referential Integrity Constraints (2 tables)*

e.g.: *bnames* associated with loans must be names of real branches

4. *Global Constraints (n tables)*

e.g.: all *loans* must be carried by at least 1 customer with a savings account
Key Constraints

Idea:

Specifies that a relation is a set, not a bag

SQL Examples:

1. **Primary Key**

 CREATE TABLE branch(
 bname CHAR(15) PRIMARY KEY,
 bcity CHAR (50),
 assets INTEGER);

 OR

 CREATE TABLE depositor(
 cname CHAR(15),
 acct_no CHAR(5),
 PRIMARY KEY (cname, acct_no));
Key Constraints (cont.)

Idea:

Specifies that a relation is a set, not a bag

SQL Examples (cont.):

2. Candidate Key

```sql
CREATE TABLE customer(
    ssn CHAR(19),
    cname CHAR(15),
    address CHAR(30),
    city CHAR(10),
    PRIMARY KEY (ssn),
    UNIQUE (cname, address, city));
```
Key Constraints (cont.)

Effect of SQL Key Declarations

\[
\text{PRIMARY } (A_1, \ldots, A_n) \text{ OR UNIQUE } (A_1, \ldots, A_n)
\]

1. Insertions:

Check if inserted tuple has same values for \(A_1, \ldots, A_n\) as any previous tuple. If found, reject insertion

2. Updates to any of \(A_1, \ldots, A_n\):

Treat as insertion of entire tuple
Key Constraints (cont.)

Effect of SQL Key Declarations (cont.)

\textbf{PRIMARY} \ (A_1, \ldots, A_n) \ \textbf{OR} \ \textbf{UNIQUE} \ (A_1, \ldots, A_n)

Primary vs. Unique (candidate):

1. One primary key per table. Several unique keys allowed.

2. Only primary key can be referenced by “foreign key” (Referential integrity)

3. DBMS may treat these differently (e.g.: Putting index on primary key)
Attribute Constraints

Idea:

- Attach constraints to value of attribute
- “Enhanced” type system
 (e.g.: > 0 rather than integer)

In SQL:

1. NULL

```
CREATE TABLE branch(
    bname CHAR(15) NOT NULL
)
```

2. CHECK

```
CREATE TABLE depositor(
    balance integer NOT NULL
)
```

```sql
CHECK (balance ≥ 0)
```

```sql
any WHERE clause OK here
```

⇒ affect insertions, updates in affected columns
Attribute Constraints (cont.)

Domains:

Can associate constraints with DOMAINS rather than attributes

e.g.: *Instead of:*

```sql
CREATE TABLE depositor(
    ...,
    balance integer NOT NULL
    CHECK (balance ≥ 0)
    ...)
```

One can write...
Attribute Constraints (cont.)

Domains (cont):

```sql
CREATE DOMAIN bank-balance integer(
    CONSTRAINT not-overdrawn
    CHECK (value ≥ 0),
    CONSTRAINT not-null-value
    CHECK (value NOT NULL)
)

CREATE TABLE depositor(
    ...balance bank-balance
    ...
)
```

Q: What are the advantages of associating constraints w/domains?
Advantages of Associating Constraints with Domains:

1. *Can avoid repeating specification of same constraint for multiple columns*

2. *Can name constraints*

 e.g.:

   ```
   CREATE DOMAIN bank-balance integer(
   CONSTRAINT not-overdrawn
   CHECK (value ≥ 0),
   CONSTRAINT not-null-value
   CHECK (value NOT NULL))
   ```

Allows One To:

1. **Add or remove:**

   ```
   ALTER DOMAIN bank-balance
   ADD CONSTRAINT capped
   (CHECK value ≤ 10000)
   ```

2. **Report better errors (know which constraint violated)**
Referential Integrity Constraints

Idea:

Prevent “dangling tuples” (e.g.: A loan with bname, Waltham when no Waltham tuple in branch)

Illustrated:

Referential Integrity:

Ensure that: Foreign Key \rightarrow Primary Key value

Note: Need not ensure (i.e.: Not all branches must have loans)
Referential Integrity Constraints

Q: Why are dangling references bad?

A: Think E/R Diagrams. In what situation do we create table A (with column containing keys of table B)

1. A represents a relationship with B, or is an entity set with an n:1 relationship with B
2. A is a weak entity dominated by B (d.r. violates weak entity condition)
3. A is a specialization of B (dang.ref. violates inheritance tree)
Referential Integrity Constraints

In SQL, Declare:

```sql
CREATE TABLE branch(
    bname CHAR(15) PRIMARY KEY
)

CREATE TABLE loan(
    ...
    FOREIGN KEY bname REFERENCES branch)
```

Affects:

1. Insertions, updates of *referencing* relation
2. Deletions, updates of *referenced* relation

Ensure no tuples in referencing relation left dangling
Referential Integrity Constraints

Q: What happens to tuples left dangling as a result of deletion/update of referenced relation?

A: 3 Possibilities

1. Reject deletion/update
2. Set $t_i[c]$ and $t_j[c] = $ NULL
3. Propagate deletion/update

DELETE: delete t_i, t_j
UPDATE: set $t_j[c]$, $t_j[c]$ to updated value

CSCI 127: Introduction to Database Systems
Referential Integrity Constraints

Resolving Dangling Tuples

CREATE TABLE A (...)
FOREIGN KEY C REFERENCES B <action>
...

In SQL:

What happens if I try to delete/update this tuple?
Referential Integrity Constraints

Resolving Dangling Tuples (cont.)

Deletion:

1. *(Left blank):* Deletion/update rejected

2. ON DELETE SET NULL / ON UPDATE SET NULL

 sets $t_i[c] = \text{NULL}$, $t_j[c] = \text{NULL}$

3. ON DELETE CASCADE

 delete t_i, delete t_j

 ON UPDATE CASCADE

 sets $t_i[c]$, $t_j[c]$ to new Key value
Global Constraints

Idea:

1. *Single relation (constraint spans multiple columns)*

 e.g.: CHECK (total = svngs + check)

 declared in CREATE TABLE for relation

2. *Multiple relations*
Global Constraints (cont.)

SQL Example (cont.):

Multiple relations: Every loan has a borrower with a savings account

CHECK (NOT EXISTS(
 SELECT *
 FROM loan AS l
 WHERE NOT EXISTS(
 SELECT *
 FROM borrower AS b, depositor AS d, account AS a,
 WHERE b.cname = d.cname AND d.acct_no = a.acct_no
 AND l.lno = b.lno)
))

SELECT * FROM loan AS l WHERE <non-conforming loan? (l)>
Global Constraints (cont.)

SQL Example (cont.):

Multiple relations: Every loan has a borrower with a savings account (cont.)

Problem:

With which table’s definition does this go? (loan?, depositor?,...)

A: None of the above

CREATE ASSERTION loan-constraint
 CHECK (NOT EXISTS...)

Checked with EVERY DB update! VERY EXPENSIVE...
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMAR KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMARY KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Mild</td>
</tr>
<tr>
<td>Attribute Constraints</td>
<td>CREATE TABLE CREATE DOMAIN (NOT NULL, CHECK)</td>
<td>Insertions, updates</td>
<td>Cheap</td>
</tr>
</tbody>
</table>
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMARY KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
<tr>
<td>Attribute Constraints</td>
<td>CREATE TABLE CREATE DOMAIN (NOT NULL, CHECK)</td>
<td>Insertions, updates</td>
<td>Cheap</td>
</tr>
</tbody>
</table>
| **Referential Integrity** | Table tag (FOREIGN KEY REFERENCES ...) | 1. Insertions into referencing relation
 2. Updates of referencing relation of relevant att’s
 3. Deletions from referenced relations
 4. Updates of referenced relations | 1,2: Like key constraints.
 Another reason to index/sort on primary keys
 3,4: Depends on
 a. update/delete policy chosen
 b. Existence of indexes on foreign keys |
Integrity Constraints: Summary

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Where Declared</th>
<th>Affects…</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Constraints</td>
<td>CREATE TABLE (PRIMARY KEY, UNIQUE)</td>
<td>Insertions, updates</td>
<td>Moderate</td>
</tr>
<tr>
<td>Attribute Constraints</td>
<td>CREATE TABLE CREATE DOMAIN (NOT NULL, CHECK)</td>
<td>Insertions, updates</td>
<td>Cheap</td>
</tr>
<tr>
<td>Referential Integrity</td>
<td>(FOREIGN KEY REFERENCES ...)</td>
<td>1. Insertions into referencing relation</td>
<td>1,2: Like key constraints. Another reason to index/sort on primary keys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Updates of referencing relation of relevant att’s</td>
<td>3,4: Depends on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Deletions from referenced relations</td>
<td>a. update/delete policy chosen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Updates of referenced relations</td>
<td>b. Existence of indexes on foreign keys</td>
</tr>
<tr>
<td>Global Constraints</td>
<td>Outside tables (create assertion)</td>
<td>1. For single relation constraint, with insertions, updates of relevant att’s</td>
<td>1. Cheap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. For assertions, with every database modification</td>
<td>2. Very Expensive</td>
</tr>
</tbody>
</table>
Functional Dependencies

An Example:

\[\text{loan-info} = \]

<table>
<thead>
<tr>
<th>bname</th>
<th>lno</th>
<th>cname</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dntn</td>
<td>L-17</td>
<td>Jones</td>
<td>1000</td>
</tr>
<tr>
<td>Dntn</td>
<td>L-17</td>
<td>Williams</td>
<td>1000</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-23</td>
<td>Smith</td>
<td>1000</td>
</tr>
<tr>
<td>Perry</td>
<td>L-15</td>
<td>Hayes</td>
<td>1500</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-23</td>
<td>Johnson</td>
<td>1000</td>
</tr>
</tbody>
</table>

Observe:

Tuples with the same value for \(lno \) will always have the same value for \(amt \)

We write: \(lno \to amt \)

(\(lno \) “determines” \(amt \), or \(amt \) is “functionally determined” by \(lno \))

True or False?

\(amt \to lno? \)
\(lno \to cname? \)
\(lno \to lno? \)
\(bname \to lno? \)

Can’t always decide by looking at populated db’s
Functional Dependencies

In general:

\[A_1, \ldots, A_n \rightarrow B \]

Informally:

If 2 tuples “agree” on their values for \(A_1, \ldots, A_n \), they will also agree on their values for \(B \)

Formally:

\[\forall t, u \ (t[A_1] = u[A_1] \land t[A_2] = u[A_2] \land \ldots \land t[A_n] = u[A_n] \Rightarrow t[B] = u[B]) \]
Functional Dependencies

Another Example:

Drinkers

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>likes</th>
<th>lmanf</th>
<th>fave</th>
<th>fmanf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>WS</td>
<td>Bud</td>
<td>AB</td>
<td>Duff</td>
<td>SB</td>
</tr>
<tr>
<td>Homer</td>
<td>WS</td>
<td>Duff</td>
<td>SB</td>
<td>Duff</td>
<td>SB</td>
</tr>
<tr>
<td>Apu</td>
<td>ES</td>
<td>Bud</td>
<td>AB</td>
<td>Bud</td>
<td>AB</td>
</tr>
</tbody>
</table>

What are the FD’s?

- likes \rightarrow lmanf
- fave \rightarrow fmanf
- name \rightarrow fave
- name \rightarrow addr (?)
Back to Global Integrity Constraints

How Do We Decide What Constraints to Impose?

Consider Drinkers \((\text{name, addr, likes, lmanf, fave, fmanf})\) with FD’s: \(\text{name} \rightarrow \text{addr}, \ldots\)

Q: How do we ensure that \(\text{name} \rightarrow \text{addr}\)?

A: CREATE ASSERTION name-addr
 CHECK (NOT EXISTS
 (SELECT *
 FROM Drinkers AS d_1, Drinkers AS d_2
 WHERE ?))

\[? \equiv d_1.\text{name} = d_2.\text{name} \text{ AND } d_1.\text{addr} \not= d_2.\text{addr}\]
How to derive them?

1. Key Constraints (e.g.: bname a key for branch)

 Therefore: \(bname \rightarrow bname \)
 \(bname \rightarrow city \)
 \(bname \rightarrow assets \)

 \[bname \rightarrow bname \rightarrow bname \rightarrow bcity \rightarrow assets \]

Q: Define “Super Keys” in terms of FD’s

A: Any set of attributes in a relation that functionally determines all attributes in the relation

Q: Define “Candidate Key” in terms of FD’s

A: Any super key such that the removal of any attribute leaves a set that does not functionally determine all attributes
Functional Dependencies

How to Derive Them?

1. Key Constraints
2. n:1 relationships
e.g.: beer → manufacturer, beer → price
3. Laws of Physics
e.g.: time room → course
4. Trial-and-error

Given $R = (A, B, C)$, try each of the following to see if they make sense.

$A \rightarrow B \quad C \rightarrow A \quad BC \rightarrow A$
$A \rightarrow C \quad C \rightarrow B$
$B \rightarrow A \quad AB \rightarrow C$
$B \rightarrow C \quad AC \rightarrow B$

Just write: “... plus all of the trivial dependencies”
2. Avoiding the Expense

Recall: \(\text{name} \rightarrow \text{addr} \) preserved by

\[
\text{CHECK (NOT EXISTS (SELECT * FROM Drinkers AS d_1, Drinkers AS d_2 WHERE d_1.name = d_2.name AND d_1.addr <> d_2.addr))}
\]

Q: Is it necessary to have an assertion for every FD?

A: Luckily, no. Can preprocess FD set
Some FD’s can be eliminated
Some FD’s can be combined
Functional Dependencies

Combining FD’s:

a. name → addr

CREATE ASSERTION name-addr
CHECK (NOT EXISTS
(SELECT *
FROM Drinkers AS d₁, Drinkers AS d₂
WHERE d₁.name = d₂.name AND d₁.addr <> d₂.addr))

b. name → fave

CREATE ASSERTION name-fave
CHECK (NOT EXISTS
(SELECT *
FROM Drinkers AS d₁, Drinkers AS d₂
WHERE d₁.name = d₂.name AND d₁.fave <> d₂.fave))
Combining FD’s (cont.):

Combine into: name \(\rightarrow \) addr fave

CREATE ASSERTION name-addr
 CHECK (NOT EXISTS(SELECT *
 FROM Drinkers AS d_1, Drinkers AS d_2
 WHERE d_1.name = d_2.name AND ?)

? \equiv (d_1.addr <> d_2.addr) OR (d_1.fave <> d_2.fave)
Determining Unnecessary FD’s

Consider: \(\text{name} \rightarrow \text{name} \)

```
CREATE ASSERTION name-name
CHECK (NOT EXISTS
    (SELECT *
    FROM Drinkers AS d1, Drinkers AS d2
    WHERE d1.name = d2.name AND d1.name <> d2.name))
```

Cannot possibly be violated!
Functional Dependencies

Note:

\[X \rightarrow Y \text{ s.t. } Y \supseteq X \text{ is a “trivial dependency” } \]

(True, regardless of attributes involved)

Moral:

Don’t create assertions for trivial dependencies
Determining Unnecessary FD’s

Even non-trivial FD’s can be unnecessary

e.g.:

1. name → fave

 CREATE ASSERTION name-fave
 CHECK (NOT EXISTS
 SELECT *
 FROM Drinkers AS d1, Drinkers AS d2
 WHERE d1.name = d2.name AND d1.fave <> d2.fave)

2. fave → fmanf

 CREATE ASSERTION fave-fmanf
 CHECK (NOT EXISTS
 SELECT *
 FROM Drinkers AS d1, Drinkers AS d2
 WHERE d1.fave = d2.fave AND d1.fmanf <> d2.fmanf)
Determining Unnecessary FD’s (cont.)

Even non-trivial FD’s can be unnecessary (cont.)

e.g.:

3. name \rightarrow fmanf

CREATE ASSERTION name-fmanf
CHECK (NOT EXISTS
SELECT *
FROM Drinkers AS d1, Drinkers AS d2
WHERE d1.name = d2.name AND d1.fmanf <> d2.fmanf)

Note: If 1 and 2 succeed, 3 must also
Functional Dependencies

Using FD’s to Determine Global IC’s:

Step 1: Given schema $R = \{A_1, \ldots, A_n\}$

Use key constraints, n:1 relationships, laws of physics and trial-and-error to determine an initial FD set, F

Step 2:

Use FD elimination techniques to generate an alternative (but equivalent) FD set, F'

Step 3:

Write assertions for each $f \in F'$ (for now)
Functional Dependencies

Using FD’s to Determine Global IC’s (cont.):

Issues:

1. How do we guarantee that $F = F'$?
 A: Closures

2. How do we find a “minimal” $F = F'$?
 A: Canonical cover algorithm
Functional Dependencies

Example:

Suppose:

\[R = \{A, B, C, D, E, H\} \] and we determine that:

\[F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AD \rightarrow H, D \rightarrow B\} \]

Then we determine the canonical cover of \(F \):

\[F_c = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\} \]

ensuring that \(F \) and \(F_c \) are equivalent

Note:

\(F \) requires 5 assertions
\(F_c \) requires 3 assertions
Functional Dependencies

Equivalence of FD Sets:

FD sets F, G are equivalent if they imply the same set of FD’s

e.g.:

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow C
\end{align*}
\]

\[\text{Implies } A \rightarrow C\]

Equivalence usually expressed in terms of closures

Closures:

For any FD set, F, F^+ is the set of all FD’s implied by F.

Can calculate in 2 ways:

1. Attribute closures
2. Armstrong’s axioms

Both techniques are tedious → we will do only for toy examples

Note: F equivalent to G if and only if $F^+ = G^+$
Functional Dependencies

Shorthand:

\[
\begin{align*}
C \rightarrow BD & \quad \text{same as} \quad C \rightarrow B \\
AB \rightarrow C & \quad \text{not the same as} \quad A \rightarrow C, B \rightarrow C
\end{align*}
\]

Be Careful!

true

not true
Attribute Closures

Given:

\[R = \{A, B, C, D, E, H\} \]
\[F = \{A \rightarrow BC, \]
\[\quad B \rightarrow CE, \]
\[\quad A \rightarrow E, \]
\[\quad AC \rightarrow H, \]
\[\quad D \rightarrow B\} \]

Q: What is the closure of \(CD \) (i.e., \(CD^+ \))?

A: The set of attributes that can be determined from \(CD \).
Attribute Closures (cont.)

Q: What is the closure of CD (i.e., CD^+)?

A: Algorithm `attr-closure` (X: set of attributes)

\[
\text{result } \leftarrow X \\
\text{repeat until stable} \\
\quad \text{for each FD in } F, Y \rightarrow Z, \text{ do} \\
\qquad \text{if } Y \subseteq \text{result then} \\
\qquad \qquad \text{result } \leftarrow \text{result } \cap Z
\]

\text{e.g.: `attr-closure` (CD)}

\[
\begin{array}{|c|c|}
\hline
\text{Iteration} & \text{Result} \\
\hline
0 & CD \\
\hline
\end{array}
\]

\[
R = \{A, B, C, D, E, H\} \\
F = \{A \rightarrow BC, \\
B \rightarrow CE, \\
A \rightarrow E, \\
AC \rightarrow H, \\
D \rightarrow B\}
\]
Attribute Closures (cont.)

Q: What is the **closure** of CD \((CD^+)^n\)?

A: Algorithm `attr-closure (X: set of attributes)`

```
result ← X
repeat until stable
    for each FD in F, Y → Z, do
        if Y ⊆ result then
            result ← result U Z
```

e.g.: `attr-closure (CD)`

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CD</td>
</tr>
<tr>
<td>1</td>
<td>CDB</td>
</tr>
</tbody>
</table>

\[
R = \{A, B, C, D, E, H\}
\]
\[
F = \{A → BC,
 B → CE,
 A → E,
 AC → H,
 D → B\}
\]
Q: What is the closure of $CD (CD^+)$?

A: Algorithm attr-closure (X: set of attributes)

```
result ← X
repeat until stable
    for each FD in $F$, $Y \rightarrow Z$, do
        if $Y \subseteq$ result then
            result ← result $\cup$ $Z$
```

e.g.: attr-closure (CD)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CD</td>
</tr>
<tr>
<td>1</td>
<td>CDB</td>
</tr>
<tr>
<td>2</td>
<td>$CDBE$</td>
</tr>
</tbody>
</table>

$R = \{A, B, C, D, E, H\}$

$F = \{A \rightarrow BC,$
 $B \rightarrow CE,$
 $A \rightarrow E,$
 $AC \rightarrow H,$
 $D \rightarrow B\}$
Attribute Closures

Q: What is ACD^+?
 A: $\text{ACD}^+ \rightarrow R$

Q: How can you determine if ACD is a super key?
 A: *It is if* $\text{ACD}^+ \rightarrow R$

Q: How can you determine if ACD is a candidate key?
 A: *It is if:* $\text{ACD}^+ \rightarrow R$, and
 None of $(\text{AC}^+ \rightarrow R, \text{AD}^+ \rightarrow R, \text{CD}^+ \rightarrow R)$ are true.
Using Attribute Closures To Determine FD Set Closures

Given:

\[F = \{ A \rightarrow BC, \ B \rightarrow CE, \ A \rightarrow E, \ AC \rightarrow H, \ D \rightarrow B \} \]

\[F^+ = \{ A \rightarrow A^+, \ B \rightarrow B^+, \ C \rightarrow C^+, \ D \rightarrow D^+, \ E \rightarrow E^+, \ H \rightarrow H^+, \ AB \rightarrow AB^+, \ AC \rightarrow AC^+, \ AD \rightarrow AD^+, \ AE \rightarrow AE^+, \ AH \rightarrow AH^+, \ BC \rightarrow BC^+, \ BD \rightarrow BD^+, \ ... \} \]

To Decide if \(F, G \) Are Equivalent:

1. Compute \(F^+ \)
2. Compute \(G^+ \)
3. Is \(1 = 2? \)

Expensive:

\(F^+ \) has 63 rules (in general: \(O(2^{\mid R \mid}) \) rules)
FD Closures Using Armstrong’s Axioms

A. Fundamental Rules (W, X, Y, Z: sets of attributes)

1. Reflexivity
 If \(Y \subseteq X \) then \(X \rightarrow Y \)

2. Augmentation
 If \(X \rightarrow Y \) then \(WX \rightarrow WY \)

3. Transitivity
 If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)
FD Closures Using Armstrong’s Axioms (cont.)

B. Additional rules (can be proved from 1 through 3)

4. **Union**

 If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

5. **Decomposition**

 If \(X \rightarrow YZ \) then \(X \rightarrow Y \) and \(X \rightarrow Z \)

6. **Pseudotransitivity**

 If \(X \rightarrow Y \) and \(WY \rightarrow Z \), then \(WX \rightarrow Z \)
FD Closures Using Armstrong’s Axioms

Given:
\[F = \{ A \rightarrow BC, \quad (1) \]
\[B \rightarrow CE, \quad (2) \]
\[A \rightarrow E, \quad (3) \]
\[AC \rightarrow H, \quad (4) \]
\[D \rightarrow B \} \quad (5) \]

Exhaustively Apply Armstrong’s Axioms to Generate \(F^+ \):

\[F^+ = F \cup \]

1. \(\{ (6) A \rightarrow B, (7) A \rightarrow C \} \)
 ... decomposition on (1)
2. \(\{ (8) A \rightarrow CE \} \)
 ... transitivity on (6), (2)
3. \(\{ (9) B \rightarrow C, (10) B \rightarrow E \} \)
 ... decomposition on (2)
4. \(\{ (11) A \rightarrow C, (12) A \rightarrow E \} \)
 ... decomposition on (8)
5. \(\{ (13) A \rightarrow H \} \)
 ... pseudotransitivity on (1), (4)

...
Functional Dependencies

Our Goal:

Given FD set, F, find an alternative FD set, G, that is:

1. Smaller
2. Equivalent

Bad News:

Testing $F \equiv G$ ($F^+ = G^+$) is computationally expensive

Good News: Canonical Cover Algorithm (CCA)

Given FD set, F, CCA finds minimal FD set equivalent to F

minimal: can’t find another equivalent FD set with fewer FD’s
Canonical Cover Algorithm

Given:

\[F = \{ A \rightarrow BC, \]
\[B \rightarrow CE, \]
\[A \rightarrow E, \]
\[AC \rightarrow H, \]
\[D \rightarrow B \} \]

Determine canonical cover of \(F \):

\[F_c = \{ A \rightarrow BH, \]
\[B \rightarrow CE, \]
\[D \rightarrow B \} \]

\[F_c = F \]

No \(G \) that is equiv. to \(F \) is smaller than \(F_c \)

Another Example:

\[F = \{ A \rightarrow BC, \]
\[B \rightarrow C, \]
\[A \rightarrow B, \]
\[AB \rightarrow C, \]
\[AC \rightarrow D \} \]

\[F_c = \{ A \rightarrow BH, \]
\[B \rightarrow C \} \]
Canonical Cover Algorithm

Basic Algorithm

ALGORITHM canonical-cover (X: FD Set)
BEGIN

REPEAT UNTIL STABLE
1. Where possible, apply UNION rule (A’s Axioms)
 (e.g.: A → BC, A → CD becomes A → BCD)

2. Remove "extraneous attributes" from each FD
 (e.g.: AB → C, A → B becomes A → B, B → C
 i.e.: A is extraneous in AB → C)

END
Extraneous Attributes

1. Extraneous in RHS?

\[\text{e.g.: Can we replace } A \rightarrow BC \text{ with } A \rightarrow C?\]
(i.e.: Is B extraneous in \(A \rightarrow BC \)?)

2. Extraneous in LHS?

\[\text{e.g.: Can we replace } AB \rightarrow C \text{ with } A \rightarrow C?\]
(i.e.: Is B extraneous in \(AB \rightarrow C \)?)

Simple (but expensive) test:

1. Replace \(A \rightarrow BC \) (or \(AB \rightarrow C \)) with \(A \rightarrow C \) in \(F \)

Define \(F_2 = F - \{ A \rightarrow BC \} \bigoplus \{ A \rightarrow C \} \) OR
\(F_2 = F - \{ AB \rightarrow C \} \bigoplus \{ A \rightarrow C \} \)

2. Test: Is \(F_2^+ = F^+ \)? If yes, then B was extraneous
Extraneous Attributes

A. RHS: Is B extraneous in $A \rightarrow BC$?

Step 1: $F_2 = F - \{A \rightarrow BC\} \oplus \{A \rightarrow C\}$

Step 2: $F^+ = F_2^+$?

To simplify step 2, observe that $F_2^+ \subseteq F^+$
(i.e.: no new FD’s in F_2^+)

Why? Have effectively removed $A \rightarrow B$ from F

When is $F^+ = F_2^+$?

A: When $(A \rightarrow B) \in F_2^+$ (i.e., when you can deduce it from other FD’s in F_2)

Idea: If F_2^+ includes: $A \rightarrow B$ and $A \rightarrow C$,
then it includes $A \rightarrow BC$
Extraneous Attributes

B. LHS: Is \(B \) extraneous in \(AB \rightarrow C \)?

Step 1: \(F_2 = F - \{ AB \rightarrow C \} \cup \{ A \rightarrow C \} \)

Step 2: \(F^+ = F_2^+? \)

To Simplify step 2, observe that \(F^+ \supseteq F_2^+ \) (i.e.: there may be new FD’s in \(F_2^+ \))

Why?

\(A \rightarrow C \) “implies” \(AB \rightarrow C \).

Thus, all FD’s in \(F^+ \) also in \(F_2^+ \).

But \(AB \rightarrow C \) does not “imply” \(A \rightarrow C \).

Thus, all FD’s in \(F_2^+ \), not necessarily in \(F^+ \).

When is \(F^+ = F_2^+? \)

\(A: \) When \((A \rightarrow C) \in F^+ \)

Idea: If \((A \rightarrow C) \in F^+ \), then it will include all FD’s of \(F_2^+ \)
Extraneous Attributes

A. RHS:

\[F = \{ A \rightarrow BC, \ B \rightarrow C \} , \]

is \(C \) extraneous in \(A \rightarrow BC \)?

Why or why not?

A: Yes, because

\((A \rightarrow C) \in \{ A \rightarrow B, \ B \rightarrow C \}^+\)

Proof:
1. \(A \rightarrow B \) Given
2. \(B \rightarrow C \) Given
3. \(A \rightarrow C \) transitivity, (1) and (2)

Use Armstrong’s axioms in proof

CSCI1270: Introduction to Database Systems
ALGORITHM canonical-cover (X: FD Set)
BEGIN

REPEAT UNTIL STABLE
1. Where possible, apply UNION rule (A’s Axioms)

2. Remove all extraneous attributes:
 a. Test if B extraneous in A → BC (B extraneous if (A → B) ∈ (F - {A → BC} U {A → C})+) = F_2^+
 b. Test if B extraneous in AB → C (B extraneous if (A → C) ∈ F^+)

END
Canonical Cover Algorithm

Example: Determine the canonical cover of
\[F = \{ A \rightarrow BC, \ B \rightarrow CE, \ A \rightarrow E \} \]

Iteration 1:

a. \[F = \{ A \rightarrow BCE, \ B \rightarrow CE \} \]

b. Must check for up to 5 extraneous attributes
 • B extraneous in \(A \rightarrow BCE \)? No
 • C extraneous in \(A \rightarrow BCE \)?
 Yes: \((A \rightarrow C) \in \{ A \rightarrow BE, \ B \rightarrow CE \}^+ \)
 1. \(A \rightarrow BE \) Given
 2. \(A \rightarrow B \) Decomposition (1)
 3. \(B \rightarrow CE \) Given
 4. \(B \rightarrow C \) Decomposition (3)
 5. \(A \rightarrow C \) Trans (2,4)
 • E extraneous in \(B \rightarrow CE \)? ...
Canonical Cover Algorithm

Example (cont.): \(F = \{ A \rightarrow BCE, \ B \rightarrow CE, \ A \rightarrow E \} \)

Iteration 1:

\(a. \ F = \{ A \rightarrow BCE, \ B \rightarrow CE \} \)

\(b. \) Extraneous atts:

- \(B \) extraneous in \(A \rightarrow BCE? \) No
- \(C \) extraneous in \(A \rightarrow BCE? \) Yes...
- \(E \) extraneous in \(A \rightarrow BCE? \)
 - Yes: \((A \rightarrow E) \in \{ A \rightarrow B, \ B \rightarrow CE \}^+\)
 1. \(A \rightarrow B \) Given
 2. \(B \rightarrow CE \) Given
 3. \(B \rightarrow E \) Decomposition (2)
 4. \(A \rightarrow E \) Trans \((1,3)\)
- \(E \) extraneous in \(B \rightarrow CE? \) No
- \(C \) extraneous in \(B \rightarrow CE? \) No
Canonical Cover Algorithm

Example (cont.): \(F = \{A \rightarrow BC, \; B \rightarrow CE, \; A \rightarrow E\} \)

Iteration 1:

a. \(F = \{A \rightarrow BCE, \; B \rightarrow CE\} \)

b. Extraneous atts:
 - \(B \) extraneous in \(A \rightarrow BCE? \) \(No \)
 - \(C \) extraneous in \(A \rightarrow BCE? \) \(Yes... \)
 - \(E \) extraneous in \(A \rightarrow BE? \) \(Yes... \)
 - \(E \) extraneous in \(B \rightarrow CE? \) \(No \)
 - \(C \) extraneous in \(B \rightarrow CE? \) \(No \)

Iteration 2:

a. \(F = \{A \rightarrow B, \; B \rightarrow CE\} \)

b. Extraneous atts:
 - \(E \) extraneous in \(B \rightarrow CE? \) \(No \)
 - \(C \) extraneous in \(B \rightarrow CE? \) \(No \)

\textit{DONE!}
Functional Dependencies So Far...

1. Canonical Cover Algorithm

 Result \((F_c)\) guaranteed to be minimal FD set equivalent to \(F\)

2. Closure Algorithms

 a. Armstrong’s Axioms:
 More common use: test for extraneous atts in CC algorithm

 b. Attribute closure:
 More common use: test if set of atts is a super key

3. Purpose

 a. Minimize cost of global integrity constraints
 So far: \(\min \text{gic’s} = |F_c|\)
 In fact: \(\min \text{gic’s} = 0\) (FD’s for “normalization”)
Functional Dependencies

So Far, have used for:

1. Determining global integrity constraints
2. Minimizing global integrity constraints (canonical cover)
3. Deciding if some attribute set is a key (attribute closure)

Next: Influencing schema design (normalization)