Constraints and Normalization

Kyle Cui
Constraints

- conditions that must be met for the relation to be valid
- four types of constraints
 - key constraints
 - attribute (and domain) constraints
 - referential integrity constraints
 - global constraints
Key Constraints

- primary & candidate keys
 - defined with PRIMARY KEY, UNIQUE respectively
 - triggers SQL checks when inserting a tuple with conflicting primary/candidate key

CREATE college (
 student_id integer PRIMARY KEY,
 student_name VARCHAR(128),
 student_grad_date integer
);
Attribute Constraints

- **Attribute constraints**: constraints on a single column/attribute
 - conditions such as **NOT NULL**, numeric ranges like `attr > 0`, etc.

```sql
CREATE college (  
    student_id integer PRIMARY KEY,  
    student_name NOT NULL VARCHAR(128),  
    student_grad_date NOT NULL integer CHECK(student_grad_date >= 2020  
      AND student_grad_date <= 2024)  
  );
```
Domain Constraints

- extension of attribute constraints
- domain = user-defined data type (with one or more constraints!)
- example: “bank_account” with “account_type” field; field can only be “checking” or “saving”

 CREATE DOMAIN account_type VARCHAR(12) (
 CONSTRAINT is_not_null
 CHECK (value NOT NULL),
 CONSTRAINT valid_account_type
 CHECK (value in("checking", "saving"))
);

 CREATE TABLE bank_account(acc_no INT PRIMARY KEY,
 acc_holder_name VARCHAR(30),
 acc_type account_type);
Referential Constraints

- allows values associated with certain attributes to appear for certain attributes in another relation
- foreign key in the referencing (child) table should correspond to a primary key in the referenced (parent) table
- purpose: to avoid dangling tuples.
 - triggers SQL checks upon:
 a. insertions/updates in the child relation
 b. delete/update in the parent relation
CREATE TABLE cities (
 city varchar(80) primary key,
 location point
);

CREATE TABLE weather (
 city varchar(80) references cities(city),
 temp_lo int,
 temp_hi int,
 date date
);

- cities parent, weather child
- upon insertion or update into weather, makes sure that the city field exists in cities
- upon deletion or update in cities, updates or deletes corresponding fields in weather (cascade delete)
Global Constraints

- constraints that the database enforces across one or more (even all) relations
- can be very expensive!
- single table: CHECK(savings + expenses > 0)
 - enforced at a single table level and may use multiple columns
- multiple relations:
 - enforced on any database change/update
 - CREATE ASSERTION constraint1 CHECK (NOT EXIST (SELECT ...))
 - can select from multiple tables
Functional Dependencies

- used to define a set of constraints between two attributes of some given relation
- given distinct sets of attributes X and Y in some relation R, X **functionally determines** Y (notation: $X \rightarrow Y$) iff each X value in R is mapped to exactly one Y value in R.
- example: attributes banner_id, student_name, student_birthdate
 - since each banner_id is associated with exactly one student and each student has only one birthday, $\text{banner_id} \rightarrow \text{student_name}$ and $\text{banner_id} \rightarrow \text{student_birthdate}$
 - but student_name does not functionally determine banner_id!
Closure

- for any set of functional dependencies (FDs) F, F^+ is called the closure
- or, the set of all functional dependencies implied by F
- simple examples
 - attributes banner_id, student_name, student_birthdate
 - $\text{banner_id} \rightarrow \text{student_name}$ and $\text{banner_id} \rightarrow \text{student_birthdate}$
 - thus, $\text{banner_id} \rightarrow \{\text{student_name}, \text{student_birthdate}\}$
 - attributes course_id, course_time, course_room
 - $\{\text{course_time}, \text{course_room}\} \rightarrow \text{course_id}$
 - (assuming you can’t hold two courses simultaneously in the same place!)
 - note course_time or course_room alone do not functionally determine course_id
Armstrong’s Axioms

1. reflexivity
 \[\text{if } Y \subseteq X \text{ then } X \rightarrow Y\]

2. augmentation
 \[\text{if } X \rightarrow Y \text{ then } WX \rightarrow WY\]

3. transitivity
 \[\text{if } X \rightarrow Y \text{ and } Y \rightarrow Z \text{ then } X \rightarrow Z\]

Derived axioms:

4. union
 \[\text{if } X \rightarrow Y \text{ and } X \rightarrow Z, \text{ then } X \rightarrow YZ\]
 \[- \text{ important note!}\]
 \[- \text{ A } \rightarrow \text{ B and A } \rightarrow \text{ C guarantees that A } \rightarrow \text{ BC; but}\]
 \[- \text{ AB } \rightarrow \text{ C doesn’t guarantee that A } \rightarrow \text{ B and A } \rightarrow \text{ C}\]

5. decomposition
 \[\text{if } X \rightarrow YZ \text{ then } X \rightarrow Y \text{ and } X \rightarrow Z\]

6. pseudotransitivity
 \[\text{if } X \rightarrow Y \text{ and } WY \rightarrow Z, \text{ then } WX \rightarrow Z\]
Computing the Closure

let F be the set of functional dependencies; initialize $F+$ to be {}
let S be the set of possible attribute combinations in R

for each s in S:
 compute the attribute closure $s+$ on F
 for each attribute A in $s+$:
 add $s \rightarrow A$ to $F+$
return $F+$
Example

$R = (A, B, C, D)$

$F = \{A \rightarrow BC, C \rightarrow D\}$
Attribute Closure

- set of all attributes which can be determined from an attribute set
- example: compute \(\{A, B\}^+ \) given the previous \(F = \{A \rightarrow BC, C \rightarrow D\} \)
 - use Armstrong’s axioms!
 - start by setting \(\{A, B\}^+ = \{\} \), then update the set

\[
\begin{align*}
A \rightarrow A \text{ and } B \rightarrow B \text{ from reflexivity: update } & \{A, B\}^+ = \{A, B\} \\
A \rightarrow BC \text{ gives } A \rightarrow B \text{ and } A \rightarrow C: \text{ update } & \{A, B\}^+ = \{A, B, C\} \\
C \rightarrow D \text{ combined with } A \rightarrow C \text{ gives } A \rightarrow D: \text{ update } & \{A, B\}^+ = \{A, B, C, D\}
\end{align*}
\]

\(\{A, B\}^+ = \{A, B, C, D\} \)
\{A\}^+ = \{A, B, C, D\} \quad \leftarrow \text{minimum candidate key}
\{B\}^+ = \{B\}
\{C\}^+ = \{C, D\}
\{D\}^+ = \{D\}
\{A, B\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
\{A, C\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
\{A, D\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
\{B, C\}^+ = \{B, C, D\}
\{B, D\}^+ = \{B, D\}
\{C, D\}^+ = \{C, D\}
\{A, B, C\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
\{A, B, D\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
\{A, C, D\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
\{B, C, D\}^+ = \{B, C, D\}
\{A, B, C, D\}^+ = \{A, B, C, D\} \quad \leftarrow \text{superkey}
Canonical Cover

- a minimal set of functional dependencies C which imply every FD defined in the closure of F,

canonical-cover(X: FD Set)
REPEAT UNTIL STABLE
 1. apply UNION rule whenever possible (X \(\rightarrow\) Y and X \(\rightarrow\) Z means X \(\rightarrow\) YZ)
 2. remove all extraneous attributes:
 a. Test if B extraneous in A \(\rightarrow\) BC
 \(B \) extraneous if (A \(\rightarrow\) B) \(\in\) \((F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+\) = \(F^+\)
 b. Test if B extraneous in AB \(\rightarrow\) C
 \(B \) extraneous if (A \(\rightarrow\) C) \(\in\) \(F^+\) (this is an axiom)
Canonical Cover Example

F = \{A \to BC; B \to C; A \to B; AB \to C\}

F = \{A \to BC; B \to C; AB \to C\}

combine A \to B and A \to BC, since A \to BC contains A \to B

F = \{A \to BC; B \to C, A \to C\}

A \to BC gives us A \to C, and so B is extraneous AB \to C

F = \{A \to BC; B \to C\}

F = \{A \to BC; B \to C\}

A \to BC gives us A \to C, and so A \to C is extraneous

F = \{A \to B; B \to C\}

A \to B with B \to C implies that A \to C, so C is extraneous in A \to BC
Questions?
Schema Decomposition

- breaking down a relation with 2 or more smaller relations
- motivation?
 - easier to express data constraints
 - avoid excessively large relations that can have data redundancy leading to inconsistencies
- desired properties of (good) decompositions
 - lossless joins
 - dependency preservation
 - redundancy avoidance
Joins & Lossless Joins

- breaking down a relation into smaller ones should not cause data to be lost
 - if any sort of information is lost, it is considered lossy
- if R is broken down into R_1, R_2, then $R = R_1 \bowtie R_2$
- ex: $R = (\text{ssn, name, address})$ can be broken down into:

 a) $R_1 = (\text{ssn, name})$ $R_2 = (\text{name, address})$

 b) $R_1 = (\text{ssn, name})$ $R_2 = (\text{ssn, address})$

- which is lossy (if either)?
- even though the result set has more tuples, this is lossy!
- why?
- lossless!
Dependency Preservation

- For a set of FDs F over a relation R, if we decompose R into R_1 and R_2
- and R_1 has a set of FDs F_1 contained in it, and R_2 has a set of FDs F_2, contained in it, where F_1 and F_2 are subsets of F^+
- then, if we can derive F^+ from just F_1 and F_2, then we say that the decomposition is dependency preserving.
Dependency Preservation

\[R = (\text{ssn}, \text{name}, \text{age}, \text{can_drink}) \]

\[F = \{ \text{ssn} \rightarrow \{\text{name}, \text{age}\}, \text{age} \rightarrow \text{can_drink} \} \]

Note that \(\text{ssn} \rightarrow \text{can_drink} \), by transitivity.

Decompose \(R \) into \(R_1 = (\text{ssn}, \text{name}, \text{age}) \), \(R_2 = (\text{age}, \text{can_drink}) \)
then we can check \(\text{ssn} \rightarrow \{\text{name}, \text{age}\}, \text{age} \rightarrow \text{can_drink} \)
from just checking \(R_1 \) and \(R_2 \), without having to do any joins.

And all other FDs can be derived from them, so it is dependency preserving.
Dependency Preservation

\[R = (A, B, C, D) \]
\[F = \{ A \rightarrow B, B \rightarrow C \} \]

Suppose we decompose \(R \) into \(R_1 = (A, B), R_2 = (A, C, D) \),
Then we can only check \(A \rightarrow B, A \rightarrow C \) without joins, and not \(B \rightarrow C \) (for that we'd need a join)
So not DP.

However, if we decompose: \(R_1 = (A, B), R_2 = (B, C, D) \)
Then DP, since checking \(A \rightarrow B \) and \(B \rightarrow C \) can be done without joins, and they imply \(A \rightarrow C \), so
all dependencies are covered by just checking the dependencies inside of the relations
Boyce-Codd Normal Form

- a relation R is in Boyce-Codd Normal Form (BCNF) if F^+ has no FD $X \rightarrow A$ such that
 - attribute A and all the attributes of set X appear in R (all attributes from both sides of the FD are in R)
 - A not in X (the FD is not trivial)
 - X (the left side) does not contain any candidate key of R
- if we can find a FD that satisfies all of the above, then it is not in BCNF
Boyce-Codd Normal Form

- assume 4 attributes A, B, C, D and F = \{A \rightarrow B, B \rightarrow C\}
- is R = (A, B, C) in BCNF?
 - B \rightarrow C involves R, since B and C are both in R
 - not trivial
 - left side (B) does not contain a candidate key of R (A)
- since there exists an FD in R that satisfies all three conditions, it is not BCNF
BCNF Algorithm

1. split R on some FD $X \rightarrow Y$ in F into $R_1(X_1, Y_1)$
2. update R by setting $R = R - [Y]$ (remove Y from the pool of original attributes)
3. split R on another FD $X_2 \rightarrow Y_2$ in F into $R_2(X_2, Y_2)$
4. repeat 2-3 until every R_j is in BCNF
BCNF Example, Not Dependency Preserving

\[R = (A, B, C) \]

\[F = \{AB \rightarrow C, C \rightarrow A\} \]

\[R_1 = (B, C) \quad R_2 = (C, A) \]
Boyce-Codd Normal Form

- useful because:
 - guarantees no redundancies and lossless joins!
 - but is *not* dependency preserving