Warmup #1 (Textbook Problem 11.15)

When is it preferable to use a dense index rather than a sparse index? Explain your answer.
Answer: It is preferable to use a dense index instead of a sparse index when the file is not sorted on the indexed field, such as when the index is a secondary index, or when the index file is small compared to the size of memory.

Warmup #2 (Textbook Problem 11.16)

What is the difference between a clustering index and a secondary index?
Answer: The clustering index is on the field which specifies the sequential order of the file. There can only be one clustering index while there can be many secondary indices.

Warmup #3 (Textbook Problem 11.6)

Suppose that we are using extendable hashing on a file that contains records with the following search-key values:

2, 3, 5, 7, 11, 17, 19, 23, 29, 31

Show the extendable hash structure for this file if the hash function is $h(x) = x \mod 8$ and buckets can hold three records.
Answer:

11.6 Answer: Extendable hash structure
Warmup #4 (Textbook Problem 11.22)

Up until now, the indexes covered in class have all been single-field indexes. However, we can also have what’s called a **compound index**, which allows a dataset to be sorted by multiple attributes. Suppose there is a relation \(r(A,B,C) \), with a B⁺-tree index with search key \((A,B)\). This means that \(r \) is sorted first by \(A \), then by \(B \).

1. What is the worst-case cost of finding records satisfying \(10 < A < 50 \) using this index, in terms of the number of records retrieved \(n_1 \) and the height \(h \) of the tree?

2. What is the worst-case cost of finding records satisfying \(10 < A < 50 \land 5 < B < 10 \) using this index, in terms of the number of records \(n_2 \) that satisfy this selection, as well as \(n_1 \) and \(h \) defined above?

3. Under what conditions on \(n_1 \) and \(n_2 \) would the index be an efficient way of finding records satisfying \(10 < A < 50 \land 5 < B < 10 \)?

Answer: By definition, the composite key \((A, B)\) is first ordered on \(A \), and then data of the same value of \(A \) are ordered on \(B \). In other words,
\[
(a_i, b_i) < (a_j, b_j) \iff (a_i < b_i) \lor (a_i = a_j \land b_i < b_j).
\]

1. The range search of \(10 < A < 50 \) consists of a tree traversal of length equal to the height \(h \), and a leaf scan of \(n_1 \) matching tuples. In the worst case, the matching tuples are stored in \(n_1 \) leaves when the capacity of a leaf is one. Therefore the worst-case cost is \(h + n_1 \).

2. The range search of \(10 < A < 50 \land 5 < B < 10 \) consists of a tree traversal of length equal to \(h \), and a leaf scan of \(n_1 \) tuples which contain \(n_2 \) matching tuples. In the worst case, the scanned tuples are stored in \(n_1 \) leaves when the capacity of a leaf is one. Therefore the worst-case cost is \(h + n_1 \). Note that \(n_2 \), or the number of matching tuples, does not affect the total cost.

3. The range search of \(10 < A < 50 \land 5 < B < 10 \) would be efficient if \(n_1 = n_2 \), because all tuples retrieved are matching tuples.

Problem 5 (To Be Graded)

Given the above primary index of B⁺-tree of maximum fanout of 3, please answer the following questions.

1. List the nodes in the order of traversal for the following look up requests.
 (a) Look up key 13.
 (b) Look up key 8.
(c) Look up keys in range \([6, 16]\) (inclusive range).

Answer:

(a) \((9, \text{null}), (13, 17), (13, 15)\).
(b) \((9, \text{null}), (5, \text{null}), (5, 7)\).
(c) \((9, \text{null}), (5, \text{null}), (5, 7), (9, 11), (13, 15), (17, \text{null})\).

2. Draw the tree after the following operations executed in the listed order. In case of leaf node split, assume two entries move to the new leaf.

(a) Insert 6.
(b) Insert 10.
(c) Delete 9.

Answer:

![Figure 1: Problem 5.2](image)

3. Assume the original tree. How many keys at most can be inserted without any internal node split at the second level of the tree (i.e. nodes \((5, \text{null})\) and \((13, 17)\))?

Answer: At most 3 keys can be inserted before splitting any internal node at the second level. For example, insert 18, insert \(\pi\) and insert \(e\). At this point the both the leaf level and the second level are saturated.

Problem 6 (To Be Graded)

Consider the following hash buckets, each with a maximum size of 4 elements:

<table>
<thead>
<tr>
<th>catalog</th>
<th>buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>8, 12, 24, 36</td>
</tr>
<tr>
<td>01</td>
<td>5, 17, 21</td>
</tr>
<tr>
<td>10</td>
<td>2, 18, 22</td>
</tr>
<tr>
<td>11</td>
<td>3, 7, 23, 31</td>
</tr>
</tbody>
</table>

Add the elements \(11, 30, 28, 10\) and \(39\) (in this order) using the following hashing strategies:

1. Use **extendible hashing** to add the elements. The buckets you start with have a global depth of 2, and each individual bucket also has a local depth of 2. If multiple entries in the directory point to the same bucket, be sure to indicate it in your solution. Please illustrate the full state of your hash buckets after each addition, including changes to the catalog and any change to global or local depth.
2. Use **linear hashing** to add the elements. Note that the "catalog" value is used purely for illustration, but you should maintain the values in your solution. The *Next* pointer starts by pointing at the first bucket (labeled 00), and your value for \(N = 4 \). Please illustrate the full state of your hash buckets after each addition, including where the *Next* pointer is pointing and additions to the "catalog" values.

1. Answer: The final state is

![Figure 2: Problem 6.1](image)

2. Answer: There can be many possible split criteria, but the one used here should be the same as stated in the lecture slides, unless the student stated otherwise. Assume an insertion causes a split when the corresponding bucket overflows after the insertion. The final state is

![Figure 3: Problem 6.2](image)