Decision Trees
Playing Tennis

- Is it raining out?
 - Probably shouldn’t play
- Is it really hot?
 - Yes: Maybe, is it also windy?
 - If yes, sure!
 - Otherwise, I’ll pass
 - No: Sounds like a nice day, let’s play!

Image Credit: Will Povell (TA ‘17)
Decision Trees

- Goal: Classification
- Main Idea: Modeled after flowcharts
 - Ask Yes/No questions until you learn enough to classify
 - Similar to 20 questions (Is it bigger than a breadbox?)
- Strategy: What questions should you ask?
Weather is the best predictor!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp</th>
<th>Windy?</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cold</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- Rainy: 0% Play
- Sunny: 66% Play
- Hot: 50% Play
- Cold: 33% Play
- Windy: 50% Play
- Not Windy: 33% Play
Majority Vote

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windy</td>
<td>50% Play</td>
</tr>
<tr>
<td>Not Windy</td>
<td>33% Play</td>
</tr>
</tbody>
</table>

PLAY!

What if the data say play tennis on some sunny, hot, windy days, and on others don’t? What then?
Misclassification Error

<table>
<thead>
<tr>
<th>windy</th>
<th>50% Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>not windy</td>
<td>33% Play</td>
</tr>
</tbody>
</table>

50% of the observations at this node are classified correctly.

- \(\max(p_1, p_2) \) are classified correctly
- \(1 - \max(p_1, p_2) \) are classified incorrectly

Here, \(p_1 \) and \(p_2 \) are the percentages in class 1 and 2, respectively.
To asking good questions, minimize error!

- $p_1 = \% \text{ belonging to class 1}$
- $p_2 = \% \text{ belonging to class 2}$
- $\text{Error} = 1 - \max(p_1, p_2)$

GOOD

- 11 \rightarrow 11
- 11 \rightarrow 22
- 22 \rightarrow 12

BAD

- 11 \rightarrow 22
- 22 \rightarrow 12
- 12 \rightarrow 12

- **GOOD**: Error = $1 - \max(100\%, 0\%) = 1 - 1 = 0$
- **BAD**: Error = $1 - \max(50\%, 50\%) = 1 - 0.5 = 0.5$
To asking good questions, minimize error!

Error(Left) = 1 - max(66%, 33%) = 0.33
Error(Right) = 1 - max(0%, 100%) = 0.0

Weight(Left) = 60%
Weight(Right) = 40%

Weighted error = (0.33 x 0.6) + (0.0 x 0.4) = 0.2
<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp</th>
<th>Windy?</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cold</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Error(Left) = 1 - max(100%, 0%) = 0
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0) + (0.6 * 0.33) = 0.2

Error(Left) = 1 - max(50%, 50%) = 0.5
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0.5) + (0.6 * 0.33) = 0.4

Error(Left) = 1 - max(50%, 50%) = 0.5
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0.5) + (0.6 * 0.33) = 0.4
The Algorithm

- Start at the root of the tree, with all observations
- Score all the questions using current set of observations
- Split current set of observations based on the one with the best score
- Repeat until all sets of observations are contained in just one class
- Classify by walking the tree according to the feature values of a new observation
A decision tree for *iris*
A decision tree for *iris*
Other issues with building decision trees

- How to fill in missing values (next week)
- How to split on numerical values
 - Temperature is in degrees rather than hot vs cold
 - One option is to bin values (temp > 75 vs temp < 75)
- How to handle noisy labels: identical observations with different labels
Classifying Mammals vs. Non-mammals

Training data

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernate</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>porcupine</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>cat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no*</td>
</tr>
<tr>
<td>bat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>whale</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>salamander</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>komodo dragon</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>python</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>salmon</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>eagle</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>guppy</td>
<td>cold-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Test data

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernate</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>elephant</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>turtle</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>penguin</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>eel</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>dolphin</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>spiny anteater</td>
<td>warm-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>gila monster</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Mislabeled!
Pros of Decision Trees

Pros:

• Interpretable
• Suitable for both quantitative and categorical features
• Suitable for both quantitative and categorical labels (i.e., regression)

(Regression trees are coming very soon!)
Cons of Decision Trees

Cons:

- Easy to overfit!
- Highly variable: a small change in training data leads to a large change in tree

Occam’s Razor: The simplest explanation is best!

Einstein: “Everything should be made as simple as possible, but no simpler.”
Overfitting

Fits training data perfectly; accuracy is poor on test data!

Accuracy is less than perfect on training data; but tree is simpler, and accuracy is better than the more complex tree on test data!
Overfitting
Key Design Decision

When should you stop growing the tree?

- **Pre-pruning/Thresholding**
 - Stop when growing the tree any further does not decrease the impurity measure by enough
 - But how much is “enough”? It is impossible to know.

- **Post-pruning**
 - Replace small subtrees with leaf nodes (determine class by majority vote among observations in the subtree)
Model Selection

Find a model that appropriately balances complexity and generalization capabilities: i.e., that optimizes the bias-variance tradeoff.

- High bias, low variance
 - Set some minimum node size, only adding predictors whose children are big enough
 - Set some minimum improvement threshold, only adding predictors that are good enough

- Low bias, high variance
 - Trees of unlimited depth and (minimum) node size
Extras

Adapted from Visual Intro to Machine Learning
San Francisco and New York

- Data on NYC and SF apartments
- **Green** = SF & **Blue** = NYC
- We can look at a scatterplot matrix, a set of scatterplots comparing different features
- We can already see some patterns in the data
- Let’s look at elevation on its own first
Elevation

- NYC is lower than SF
- We could pick a convenient point, like the highest NYC house at 73m, and classify using that
- Houses above 73m are in SF, below 73m are in NYC
Elevation

- NYC < 73m, SF > 73m

```r
preds <- ifelse(apartments$elevation <= breakpoint, "NYC", "SF")
```

- Accuracy on training data is only 63%
- Barely better than guessing
Elevation

- We classify all houses about 73m correctly, but misclassify a lot below that height, called “false negatives”
- If we split on a lower height, we then misclassify many NYC homes, but we could get better accuracy overall
Elevation

- We accept some false positives, incorrectly classified NYC homes, in order to get a better overall error rate
- We can still improve our accuracy
After the split

- Here are histograms for each side of the split, lower elevation on the left and higher elevation on the right
- We can see more patterns arising in these additional features
- What if we kept splitting?
Split all the things!

- We’ve partitioned our data once, why not split on different features?
- For low elevation houses, splitting on price per square foot gives the best results; same as price for high elevation houses
Just keep splitting

- For each split, we keep splitting and eventually make a decision tree
More Extras
Decision Tree Structure: Root

- At the top of a decision tree sits a root node
- It represents the question: e.g., “Which houses are in SF?”
Decision Tree Structure: Branches & Nodes

- The root node branches on some feature, spawning two or more child nodes
- And this process repeats
Decision Tree Structure: Leaves

- At the bottom of the tree are the leaves.
- These leaves contain sets of observations, so choose a class label for those observations based on their collective labels.
- The depth of a tree is how “tall” it is, or the longest path from the root to a leaf.
Decision Trees in R
Decision Trees in R

- R provides the `rpart` package for decision trees
- The package create trees as follows:
  ```r
  > library(rpart)
  > fit <- rpart(city ~ elevation + beds + bath + sqft)
  ```
- Trees can be visualized using the `rpart.plot` library:
  ```r
  > library(rpart.plot)
  > rpart.plot(fit, type = "class")
  ```
Controlling `rpart` models

- Often, we can improve performance by tweaking parameters
- `rpart.control` provides these parameters for decision trees
 - `minsplit` is the minimum number of observations that must exist to split
 - `minbucket` is the minimum number of observations that must exist in each leaf
 - `maxdepth` is the maximum depth of the decision tree
 - `xval` is the number of cross validations to perform

- Usage:
  ```r
  fit <- rpart(y ~ x, data = frame,
               control = rpart.control(maxdepth = 10))
  ```
Missing data

- Sometimes certain features will be missing in the training data
- `rpart` automatically handles missing data using surrogate splits
- Surrogates are fake values that are substituted for NAs
- They are used on missing test data, as well as missing training data
- Surrogates may not always be useful, as it may be difficult to find surrogates for some missing data values