Decision Trees
Playing Tennis

- Is it raining out?
 - Probably shouldn’t play
- Is it really hot?
 - Yes: Maybe, is it also windy?
 - If yes, sure!
 - Otherwise, I’ll pass
 - No: Sounds like a nice day, let’s play!
Decision Trees

- Modelled after flowcharts
- Main idea: Ask Yes/No questions until you learn enough to make a decision
- 20 questions: Is it bigger than a breadbox?
- Strategy: What questions should you ask first?

Image Source
<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp</th>
<th>Windy?</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cold</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Which is the best predictor?
<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp</th>
<th>Windy?</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cold</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Weather is the best predictor!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainy</td>
<td>0%</td>
</tr>
<tr>
<td>Sunny</td>
<td>66%</td>
</tr>
<tr>
<td>Hot</td>
<td>50%</td>
</tr>
<tr>
<td>Cold</td>
<td>33%</td>
</tr>
<tr>
<td>Windy</td>
<td>50%</td>
</tr>
<tr>
<td>Not Windy</td>
<td>33%</td>
</tr>
</tbody>
</table>
The data say never play tennis on Rainy days, and usually play on Sunny days.

Heuristic: **Majority vote**
- None of the Rainy observations are classified incorrectly.
- But 33% of the Sunny observations are classified incorrectly.
The data say sometimes play tennis on Windy days, and don’t usually play on non-Windy days.

Heuristic: **Majority vote**
- 50% of the Windy observations are classified incorrectly.
- 33% of the Not Windy observations are classified incorrectly.
Measure of Impurity

Misclassification error

- \(\max(p_1, p_2) \) are classified correctly
- \(1 - \max(p_1, p_2) \) are classified incorrectly

Here, \(p_1 \) and \(p_2 \) are the percentages in class 1 and 2, respectively.

In binary classification, with majority vote, \(1 - \max(p_1, p_2) \leq 0.5 \).
To ask good questions, minimize impurity!

- $p_1 = \%$ belonging to class 1
- $p_2 = \%$ belonging to class 2
- Error = 1 - max(p_1, p_2)

GOOD:
- Error = 1 - max(100%, 0%) = 1 - 1 = 0

BAD:
- Error = 1 - max(50%, 50%) = 1 - 0.5 = 0.5
To ask good questions, minimize impurity!

Error(Left) = 1 - max(66%, 33%) = 0.33
Error(Right) = 1 - max(0%, 100%) = 0.0

Weight(Left) = 60%
Weight(Right) = 40%

Weighted error = (0.33 x 0.6) + (0.0 x 0.4) = 0.2
<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp</th>
<th>Windy?</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cold</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Error(Left) = 1 - max(0%, 100%) = 0
Error(Right) = 1 - max(66%, 33%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0) + (0.6 * 0.33) = 0.2
Error(Left) = 1 - max(0%, 100%) = 0
Error(Right) = 1 - max(66%, 33%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0) + (0.6 * 0.33) = 0.2

Error(Left) = 1 - max(50%, 50%) = 0.5
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0.5) + (0.6 * 0.33) = 0.4

Error(Left) = 1 - max(50%, 50%) = 0.5
Error(Right) = 1 - max(33%, 66%) = 0.33
Weight(Left) = 0.4, Weight(Right) = 0.6
I = (0.4 * 0.5) + (0.6 * 0.33) = 0.4
The Algorithm

- Start at the root of the tree, with all observations
- Score all the questions using current set of observations
- Split current set of observations by the question with the best score
- Repeat until all sets of observations are contained in just one class, or all observations’ feature values are identical
- Classify by walking the tree according to the feature values of a new observation
Pros and Cons of Decision Trees

Pros:
- Interpretable
- Suitable for both quantitative and categorical features
- Suitable for both quantitative and categorical labels (i.e., regression)
 (Regression trees are up next!)

Cons:
- Easy to overfit!
- Highly variable: a small change in training data leads to a very different tree
Classifying Mammals vs. Non-mammals

Training data

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>porcupine</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>cat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>bat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no*</td>
</tr>
<tr>
<td>whale</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no*</td>
<td>no*</td>
</tr>
<tr>
<td>salamander</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Komodo dragon</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>python</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>salmon</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>eagle</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Guppy</td>
<td>cold-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Test data

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Elephant</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>turtle</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>penguin</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Eel</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Dolphin</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Spiny anteater</td>
<td>warm-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Gila monster</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Image Source
Overfitting

Fits training data perfectly; accuracy is poor on test data!

Accuracy is less than perfect on training data; but tree is simpler, and accuracy is better on test data!
Overfitting
Key Design Decisions

What is the best size for the tree?

● Pre-pruning/Thresholding
 ○ Stop growing the tree when:
 ■ its depth reaches some threshold
 ■ there are fewer than some threshold number of observations at a node
 ■ when the impurity measure no longer decreases by “enough”
 ● But how much is “enough”? It is difficult, if not impossible, to know.

● Post-pruning
 ○ Replace small subtrees with leaf nodes
 ○ Determine class by majority vote among observations in the subtree
Model Selection

Find a model that appropriately balances complexity and generalization capabilities: i.e., that optimizes the bias-variance tradeoff.

- **High bias, low variance**
 - Set some minimum node size, only adding predictors whose children are big enough
 - Set some minimum improvement threshold, only adding predictors that are good enough

- **Low bias, high variance**
 - Trees of unlimited depth and (minimum) node size
Other complications

- How to fill in missing values
- How to split on numerical values
 - Temperature is in degrees rather than hot vs cold
 - One option is to bin values (> 75 vs. < 75)
- How to handle noisy labels: identical observations with different labels
Classifying Mammals vs. Non-mammals

Training data

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>porcupine</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>cat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>bat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no*</td>
</tr>
<tr>
<td>whale</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>salamander</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>komodo dragon</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>python</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>salmon</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>eagle</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>guppy</td>
<td>cold-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Test data

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>elephant</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>turtle</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>penguin</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>eel</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>dolphin</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>spiny anteater</td>
<td>warm-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>gila monster</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Mislabeled!
Decision Trees in R
Decision Trees in R

- R provides the **rpart** package for decision trees
- The package create trees as follows:
  ```
  > library(rpart)
  > fit <- rpart(city ~ elevation + beds + bath + sqft)
  ```
- Trees can be visualized using the **rpart.plot** library:
  ```
  > library(rpart.plot)
  > rpart.plot(fit, type = "class")
  ```
Controlling `rpart` models

- Often, we can improve performance by tweaking parameters
- `rpart.control` provides these parameters for decision trees
 - `minsplit` is the minimum number of observations that must exist to split
 - `minbucket` is the minimum number of observations that must exist in each leaf
 - `maxdepth` is the maximum depth of the decision tree
 - `xval` is the number of cross validations to perform

- Usage:
  ```r
  fit <- rpart(y ~ x, data = frame, 
               control = rpart.control(maxdepth = 10))
  ```
Missing data

- Sometimes certain features will be missing in the training data
- *rpart* automatically handles missing data using surrogate splits
- Surrogates are fake values that are substituted for NAs
- They are used on missing test data, as well as missing training data
- It is sometimes difficult to find appropriate surrogates for missing data
A decision tree for *iris*
A decision tree for *iris*
Misclassification error for the decision tree for **iris**

- 22 irises that have been misclassified
- \(\frac{22}{150} \) irises misclassified = 14.67% misclassification rate
Extras

Adapted from Visual Intro to Machine Learning
San Francisco and New York

- Data on NYC and SF apartments
- Green = SF & Blue = NYC
- We can look at a scatterplot matrix, a set of scatterplots comparing different features
- We can already see some patterns in the data
- Let’s look at elevation on its own first
Elevation

- NYC is lower than SF
- We could pick a convenient point, like the highest NYC house at 73m, and classify using that
- Houses above 73m are in SF, below 73m are in NYC
Elevation

- NYC < 73m, SF > 73m

```
preds <- ifelse(apartments$elevation <= breakpoint, "NYC", "SF")
```

- Accuracy on training data is only 63%
- Barely better than guessing
Elevation

- We classify all houses about 73m correctly, but misclassify a lot below that height, called “false negatives”
- If we split on a lower height, we then misclassify many NYC homes, but we could get better accuracy overall
Elevation

- We accept some false positives, incorrectly classified NYC homes, in order to get a better overall error rate
- We can still improve our accuracy
After the split

- Here are histograms for each side of the split, lower elevation on the left and higher elevation on the right
- We can see more patterns arising in these additional features
- What if we kept splitting?
Split all the things!

- We’ve partitioned our data once, why not split on different features?
- For low elevation houses, splitting on price per square foot gives the best results; same as price for high elevation houses
Just keep splitting

- For each split, we keep splitting and eventually make a decision tree
More Extras
Decision Tree Structure: Root

- At the top of a decision tree sits a root node.
- It represents the question: e.g., “Which houses are in SF?”
Decision Tree Structure: Branches & Nodes

- The root node branches on some feature, spawning two or more child nodes
- And this process repeats

```
SF or NYC?
   /
  /  
Elevation ≤ 73m   Elevation > 73m
```

Root
Branches
Nodes
Decision Tree Structure: Leaves

- At the bottom of the tree are the leaves.
- These leaves contain sets of observations, so choose a class label for those observations based on their collective labels.
- The depth of a tree is how “tall” it is, or the longest path from the root to a leaf.