Two Historic Case Studies
John Snow: Data Scientist
London in the 1850’s

- London in the 1850’s was wealthy, but many citizens lived in extreme poverty
- Disease was rampant, especially **cholera**
- The causality between germs and diseases had not yet been discovered
- **Miasma theory**: bad air was thought to be a cause of cholera
John Snow and Cholera

- John Snow, an obstetrician/anaesthesiologist, had been observing cholera for years
- Cholera came quickly to London and killed hundreds in a week
 “Within 250 yards of the spot where Cambridge Street joins Broad Street, there were upwards of 500 fatal attacks of cholera in 10 days,” Dr. Snow wrote.
- Patients died within a day or two of contracting the disease
- One wave of cholera could kill tens of thousands
- Snow was skeptical of the miasma theory
Snow’s Observations

- If the disease was airborne (as the miasma theory suggested), wouldn’t people living in the same area be breathing in the same toxins?
- But entire households would die of cholera, while their neighbors would be fine.
- Symptoms included vomiting and diarrhea.
- This evidence led Snow to believe the disease was food/drink borne as opposed to airborne.
- He hypothesized that some drinking water was contaminated.
Plotting Cholera

- August 1854
- Mapped out deaths
- Black bars show deaths
- Black circles show water pumps

(image drawn and lithographed by Charles Cheffins)
Snow’s Hypothesis

- Snow observed that deaths were clustered around the Broad Street Pump
- Other Evidence
 - Rupert Street Pump
 - Lion Brewery
 - Scattered houses, school kids, prison

(image drawn and lithographed by Charles Cheffins)
Further Evidence

- Two women died of Cholera in Hampstead which was not near Soho
- Snow learned that the two women used to live on Broad Street
- They liked the taste of the water from the Broad Street pump so they had it delivered to them everyday
- When Snow learned of this, he knew he was on the right track
Could Snow prove that water from the Broad Street Pump was *causing* of cholera?

- Snow suspected that the water supply was a clue to understanding outbreaks of cholera
- He still didn’t have a scientific argument proving that contaminated water was the cause
- Decided to use the *method of comparison*
Method of Comparison

- Individuals comprise the two test groups
 - Treatment
 - Control
- **Treatment**: a process that the “treatment” group undergoes
- **Control**: a group similar to the treatment group in every way, except that it does not undergo the treatment
- **Outcome**: the results observed in the treatment group
Method of Comparison

● Question: does the treatment have an effect on the outcome?
● If the outcome between the treatment and control differs significantly, we can conclude that there is an association.
● But does the treatment cause the outcome to occur?
Confounding Factors

- **Confounding factor**: an underlying difference between the treatment and control groups that is *not* the treatment

- TVs and SAT scores
 - More TVs in students’ homes correlates with higher SAT scores
 - Does watching more TV *cause* students to do well on the SATs?

- Coffee and Lung Cancer
 - People who have lung cancer also tend to drink coffee
 - Does drinking coffee *cause* lung cancer?
Snow’s “Grand Experiment”

- Lambeth water company vs. Southwark and Vauxhall (S&V)
 - S&V homes were the treatment group
 - Lambeth houses were the control group

- Snow argued there were no confounding factors, because there were no substantive differences between the populations to whom the two companies were providing water

“Each company supplies both rich and poor, both large houses and small; there is no difference either in the condition or occupation of the persons receiving the water of the different Companies … there is no difference whatever in the houses or the people receiving the supply of the two Water Companies, or in any of the physical conditions with which they are surrounded …”
Data collected by John Snow

<table>
<thead>
<tr>
<th>Supply Area</th>
<th># of Houses</th>
<th>Cholera Deaths</th>
<th>Deaths/10,000 Houses</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&V</td>
<td>40,046</td>
<td>1,263</td>
<td>315</td>
</tr>
<tr>
<td>Lambeth</td>
<td>26,107</td>
<td>98</td>
<td>37</td>
</tr>
<tr>
<td>Rest of London</td>
<td>256,423</td>
<td>1,422</td>
<td>59</td>
</tr>
</tbody>
</table>

Statistics can never be used to **PROVE** anything; but it can be used to argue that an outcome is unlikely.
If we assume that the water is not different between Lambeth and the rest of London, then the observed data might just be statistical noise.

If we assume that the water is not different between S&V and the rest of London, then it is very unlikely we’d see data this extreme!
Causality

Snow observed that the only difference between the area where people were getting sick and the area where they weren’t was that “one group being supplied with water containing the sewage of London, and amongst it, whatever might have come from the cholera patients, the other group having water quite free from impurity.”

Snow convinced the authorities to remove the handle of the Broad Street pump. It turned out there was a leaking cesspit a few feet away from the Broad Street pump well, and sewage from the households of cholera victims was seeping into the well water.
Success!

In 1866 there was another outbreak of Cholera in the Limehouse district of London.
Early Example of the Power of Data Visualization

- Snow’s data collection and data visualization saved many lives
- Snow pioneered the use of data visualization to map disease
- Nowadays, it is standard to use disease maps to track epidemics
- To this day, scientists at the Center for Disease Control (CDC) still use the phrase “Where is the handle to this pump?” when trying to uncover the cause of an epidemic
A Little More History

- In 1854 (at about the same time Snow was drawing these maps in London), an Italian scientist named Filippo Pacini discovered a bacterium called Vibrio cholerae that enters the small intestine and causes cholera.
- But because of the popularity of the miasma theory, Pacini’s discovery received little to no immediate attention.
- In 1883, a German scientist named Robert Koch discovered Vibrio cholerae again, and the root cause of cholera was finally uncovered.
Florence Nightingale: Data Scientist
Nurse or Data Scientist?

- While Florence Nightingale (1820-1910) is best known as the founder of modern nursing and worldwide health-reform, in fact, she was at heart a statistician, and a pioneer in data visualization.
The Crimean War

- Nightingale worked as a nurse during the Crimean War.
- She found the hospital to be highly unsanitary.
- Many soldiers were dying, but why?
- From battle wounds, or other causes, such as poor hygiene?
- Nightingale decided to collect data in attempt to settle this question.
- Her approach worked. By the time Nightingale left Crimea, the mortality rate in hospitals had dropped from 42% to 2%.
The Power of Visualization

Afraid Queen Victoria and Parliament would not read or understand her statistical report, Florence Nightingale created a graphical representation to convey her findings.
Polar Area Graph (Coxcomb)

- Each wedge represents a month from April 1854 to March 1856
- **Blue:** death by disease
- **Red:** death by wounds
- **Black:** death by other causes

Image Source
Saving Lives

- Deaths caused by disease are greater from April 1854 to March 1855 than the following year.
- A sanitary commission arrived from Britain in March 1855 to improve the sanitation of the hospitals.
Reproduction of Nightingale’s Graph

JMP’S Diagram of the Causes of Mortality in the Army in the East

Deaths - Zymotic Diseases
Deaths - Wounds & Injuries
Deaths - Other Causes

April 1855 to March 1856

Image Source