Plan for the week

- **M: Simple Linear Regression**
 - Theory: Assumptions
 - Practice: Testing the Assumptions

- **W: Multiple Regression**
 - Data Transformations
 - Categorical Data
 - Model Checking: Cross-validation

- **F: Logistic Regression** (Classification!)
iClicker Question

How much do you care about theory vs. practice re: data science?
A. I love the theory
B. Everything in moderation
C. I only care about the practice
Properties of Estimators
What is an Estimator?

- A point estimator is a function that takes data (i.e., a sample) as input, and produces point estimates as output.
 - The sample mean function outputs the mean of its input.
 - Likewise, the sample variance function outputs the variance of its input.

- Note the nomenclature: a point estimator is a rule for generating point estimates.
 - “Average all the values in the sample” is a rule/function.
 - The average of all the values in a particular sample is an estimate.
Example: Normal RVs

- Assume n i.i.d. (independent and identically distributed) normally-distributed random variables X_1, X_2, \ldots, X_n with mean μ and standard deviation σ

- $\bar{X} = (1/n) \sum X_i$ (i.e., the sample mean function) is an estimator of the mean

- $\bar{x} = (1/n) \sum x_i$ (i.e., a sample mean) is an estimate of μ
Example: Bernoulli RVs

- Assume n i.i.d. (independent and identically distributed) Bernoulli random variables X_1, X_2, \ldots, X_n with parameter p
- $\bar{X} = \frac{1}{n} \sum X_i$ (i.e., the sample proportion function) is an estimator of p
- $\bar{x} = \frac{1}{n} \sum x_i$ (i.e., a sample proportion) is an estimate of p
Evaluating Estimators (and Estimates)

- Any function of the data is an estimator!
- So how do we know we’ve got a good one?
- Desiderata:
 - In the limit, as the sample size tends to ∞, a consistent estimator converges to the model parameter it is estimating
 - An estimator is called unbiased if its expected value is the model parameter it is estimating
 - The efficiency of an estimator measures the quantity of data necessary to produce a certain quality estimate
Consistency

- An estimator is consistent if its value approaches its true value as the sample size tends to ∞.
- Consistent estimators become more accurate as the sample size increases.
- Is the sample mean a consistent estimator? Why or why not?
Bias

- Suppose θ^* is our model parameter, and θ is our estimator.
- The function θ applied to data $x \sim X$ yields a point estimate.
- $E_X[\theta(x)]$ is the expected value of the estimator, where the randomness comes from the randomness in the data.
- $\text{Bias}[\theta] = E_X[\theta(x)] - \theta^*$
- If $\text{Bias}[\theta] = 0$, then θ is called unbiased.
- If an estimator is unbiased, then on average it yields an accurate prediction of the model parameter.
Example

- Let $\bar{X} = \frac{1}{n} \sum X_i$ represent the sample mean estimator.
- $\text{Bias}[\bar{X}] = E_X[\bar{X}] - \mu = E_X[(1/n) \sum X_i] - \mu = (1/n) \sum E[X_i] - \mu = (1/n) \sum \mu = (1/n) n \mu - \mu = \mu - \mu = 0.$
- The sample mean estimator is unbiased.

- Let $\bar{X} = \frac{1}{n} \sum X_i$ represent the sample proportion estimator.
- $\text{Bias}[\bar{X}] = E_X[\bar{X}] - p = E_X[(1/n) \sum X_i] - p = (1/n) \sum E[X_i] - p = (1/n) \sum p = (1/n) np - p = p - p = 0.$
- The sample proportion estimator is unbiased.
Example, continued

- But X_1 and X_2 and so on are also unbiased.
- So why is \bar{X} a better estimator than X_1 (or X_2, and so on)?
- Given two unbiased estimators, the preferred one is the one with lower variance (i.e., the more efficient one):
 - $\text{Var}(X_1) = \sigma$
 - $\text{Var}(\bar{X}) = \text{Var}(1/n \sum X_i)$
 - $= 1/n^2 \sum \text{Var}(X_i)$
 - $= \sigma/n$
 - $\text{Var}(\bar{X}) < \text{Var}(X_1)$
 - $\text{Var}(X_1) = p(1 - p)$
 - $\text{Var}(\bar{X}) = \text{Var}(1/n \sum X_i)$
 - $= 1/n^2 \sum \text{Var}(X_i)$
 - $= p(1 - p)/n$
 - $\text{Var}(\bar{X}) < \text{Var}(X_1)$
Best Linear Unbiased Estimators (BLUE)

- The sample mean is the most efficient estimator of the population mean, among all other weighted average that are also unbiased estimators.
- This result follows from the Gauss-Markov theorem, which states that the OLS estimators b_0, b_1 are the most efficient among all linear unbiased estimators, under standard assumptions.
Linear Regression, Revisited
Linear Model

- The distribution of X is arbitrary.
- The distribution of Y depends on that of $X = x$ in a linear fashion:
 - Y is distributed with mean $\beta_0 + \beta_1 x$.
- Find β_0 and β_1 that minimize the mean squared error:
 - (β_0, β_1) s.t $E[(Y - \beta_0 + \beta_1 x)^2 \mid X = x]$ is minimized
Linear Model (cont’d)

- The distribution of X is arbitrary.
- The distribution of Y depends on that of $X = x$ in a linear fashion:
 - Y is distributed with mean $\beta_0 + \beta_1 x$.
- Find β_0 and β_1 that minimize the mean squared error:
 - (β_0, β_1) s.t $\text{E}[(Y - \beta_0 + \beta_1 x)^2 | X = x]$ is minimized
- Solve as usual with calculus:
 - Take partial derivatives, and set them equal to zero.
- Out pops:
 - $\beta_0 = \text{E}[Y] - \beta_1 \text{E}[X]$
 - $\beta_1 = \text{Cov}[X, Y] / \text{Var}[X] = \text{Corr}[X, Y] \sigma_Y / \sigma_X$
 - $b_0 = \bar{y} - b_1 \bar{x}$
 - $b_1 = r_{xy} (s_{yy} / s_{xx})$
- The same answer as before—in expectation!
Linear Model: Additional Assumptions

- The distribution of X is arbitrary.
- The distribution of Y depends on that of $X = x$ in a linear fashion:
 - Y is distributed with mean $\beta_0 + \beta_1 x$.
- The noise in the distribution can be described by random variables ε_i.
 - Linear model: given $X = x$, $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, for all $1 \leq i \leq n$.
 - The conditional expectation of the noise terms is 0: $E[\varepsilon_i \mid X = x] = 0$.
 - The conditional variance of the noise terms is constant: $\text{Var}[\varepsilon_i \mid X = x] = \sigma^2$.
 - The noise terms are uncorrelated with themselves (i.e., no time-series data): $\text{Cov}[\varepsilon_i, \varepsilon_j] = 0$, for all $i \neq j$.
- Under these assumptions, b_0 and b_1 are unbiased and consistent estimators.
 - Unbiased, because the conditional expectation of the noise terms is 0.
 - Consistent, by the law of large numbers, and other assumptions of the model.