Hypothesis Testing
A Motivating Example

- Between 1960 and 1980, there were many lawsuits in the South claiming racial bias in jury selection.

- Here’s some made up* (but similar) supporting data:
 - 50% of citizens in the local area are African American
 - On an 80 person panel, only 4 were African American

- Can this outcome be explained as the result of pure chance?

- Unlikely: If \(X \sim B(80, .5) \), then \(P[X \leq 4] = 1.8 \times 10^{-18} \)

- \(\textit{N.B.}: \) Statistics can never \textit{prove} anything!

*This example was borrowed from \textit{The Cartoon Guide to Statistics}.\)
A hypothesis test is designed to test whether observed data is “as expected”, as described by a statistical model.

- Are the colors in a bag of M&Ms distributed as expected?
- Did the proportion of the U.S. adult population who support environmental regulations change in the past year, the past decade, the past century, etc.?
- Are there fewer COVID cases among the vaccinated?

A test statistic is a measure of the observed data relative to what is expected.

A hypothesis test then compares the probability of the test statistic with a significance level, and rejects the model if this probability is sufficiently low.

A significance level (α) is a cutoff, determined in advance, below which we will declare that we have observed something other than what was expected.
Hypothesis Testing, in more detail

- **Step 1: Formulate a null and an alternative hypothesis**
 - The null hypothesis is a claim that data are distributed in some way (e.g., $B(80, 0.5)$)
 - An alternative hypothesis is a claim that data are distributed in some other way (e.g., $p < 0.5$)
 - The null is so-called because it is usually a claim about no significant effect or difference, and it is often something we suspect the data will disprove.

- **Step 2: Compute a test statistic**
 - A test statistic summarizes the observed data, relative to the null hypothesis.

- **Step 3: Find the p-value of the test statistic**
 - What is the probability of observing this value of the test statistic, under the null hypothesis?
 - A p-value measures the extent to which an observed sample of data agrees with an assumed probability model (i.e., the distribution under the null hypothesis).

- **Step 4: Determine whether the test statistic is significant**
 - If the p-value < α, then the test is deemed significant, and the null hypothesis is rejected.
Example Test Statistics

\[z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \]

\[t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}, \]

\[df = n - 1 \]

\[\chi^2 = \sum_{k} \frac{(\text{observed} - \text{expected})^2}{\text{expected}} \]
Back to the Example

- **Numerator:** $p_{\hat{}} - p = \left(\frac{4}{80}\right) - 0.5 = 0.05 - 0.5 = -0.45$
 - By subtracting $p = 0.5$, we are assuming the null hypothesis is $p = 0.5$.

- **Denominator: Standard Error**
 - $\text{Var}[p_{\hat{}}] = (0.5)(1 - 0.5)/80 = 0.003125$
 - The standard error is the square root of this variance: $\sqrt{0.003125} = 0.056$

- **t-statistic:** $-0.45/0.056 \approx -8.0$
 - That’s a whole lot of standard deviations below the mean!

- If the null hypothesis were true, the probability of observing this value of our test statistic is essentially 0.

- We reject the null hypothesis and search for alternative explanations.
Hypothesis testing and confidence intervals are two sides of the same coin.

- The 95% CI is $\Pr[p_{\text{hat}} - z_{\text{lo}} \sigma_{\text{hat}} \leq \mu \leq p_{\text{hat}} + z_{\text{hi}} \sigma_{\text{hat}}] = .95$
 - Lower Bound: $4/80 + (-1.96)(0.056) = -0.06$
 - Upper Bound: $4/80 + (1.96)(0.056) = 0.15$

- This interval does not contain 0.5, the null hypothesis.
- We reject the null hypothesis and search for alternative explanations.
Example: Election polls for the 46th U.S. president

- YouGov surveyed 1300 people in the U.S. on October 7th and 8th, 2016.
- “Who will you vote for in the election for President in November?”
 - 44% of people planned to vote for Clinton.
 - 38% of people planned to vote for Trump.
Step 1: Formulate the Hypotheses

- Our null hypothesis is that the proportion of people that plan to vote for Trump is identical to the proportion of people that plan to vote for Clinton.
 - \(p_H = p_T \): i.e., \(p_{\text{null}} = 0 \)

- Our alternative hypothesis is that the proportion of people who plan to vote for Clinton is higher than the proportion who plan to vote for Trump.
 - \(p_H > p_T \)
Step 1: Formulate the Hypotheses, Revisited

- Our null hypothesis is that the proportion of people that plan to vote for Trump is identical to the proportion of people that plan to vote for Clinton.
 - \(p_H = p_T \): i.e., \(p_{\text{null}} = 0 \)
- Our alternative hypothesis is that the proportion of people who plan to vote for Clinton is higher than the proportion who plan to vote for Trump.
 - \(p_H > p_T \)
- Other plausible alternative hypotheses include:
 - \(p_H < p_T \)
 - \(p_H \neq p_T \): i.e., \(p_H > p_T \) or \(p_H < p_T \)
- Our choice tests whether there is a difference in one or both directions.
Step 2: Calculate the Test Statistic

- **t-statistic for the difference between two sample proportions**

- **Numerator:** \((p_H - p_T) - p_{\text{NULL}} = (.44 - .38) - 0 = .06\)
 - By subtracting 0, we are assuming the null hypothesis (i.e., it is our baseline).

- **Denominator:** Standard Error
 - \(.44)(1300) = 572\) people preferred Clinton
 - \(.38)(1300) = 494\) people preferred Trump
 - \(\text{Var}[p_H - p_T] = (0.44)(1 - 0.44)/572 + (0.38)(1 - 0.38)/494 = 0.0009\)
 - The standard error is the square root of this variance: \(\sqrt{0.0009} = 0.0301\)

- **t-statistic:** \(0.06 / 0.0301 = 1.99\)
Step 3: Calculate the p-value

- What is the probability of observing this value of the test statistic?
 - $\text{pnorm}(1.99, \text{lower.tail} = \text{FALSE}) = 0.023$

- Under the null hypothesis, there was only a 2.3% chance we would see data that favor Clinton as much or more than what we saw in the YouGov poll.

- This means one of two things:
 - We witnessed something incredibly rare.
 - The assumption that the null hypothesis is true is incorrect.
Steps 0 and 4: Hypothesis Testing

- Typically, using expert knowledge, the researcher sets a benchmark threshold (α-level) before running the test.
- Often, the threshold is 5% (corresponding to a 95% confidence interval).
- If the p-value is below this threshold, then the test is deemed significant, and the null hypothesis is rejected. A search for alternative explanations ensues.

Intuitively, since $1.99 > 1.645^*$, we reject the null hypothesis at the $\alpha = 0.05$ level. Likewise, since $0.023 < 0.05$, we reject the null hypothesis at the $\alpha = 0.05$ level.

*Recall we are performing a one-sided test!
All the Steps in Hypothesis Testing

- **Step 0**: Set a significance level (α)
- **Step 1**: Formulate null and alternative hypotheses
- **Step 2**: Compute a test statistic, assuming the null hypothesis
- **Step 3**: Find the p-value of the test statistic, assuming the null hypothesis
- **Step 4**: Compare the p-value to α
 - If the p-value < α, then the test is deemed significant, and the null hypothesis is rejected
 - Otherwise, the test is insignificant, and the null hypothesis cannot be rejected
Language of Hypothesis Testing

- **Critical value**: the value of the test statistic at which the null hypothesis is rejected, given the significance level (α)

- **Rejection region**: the set of values of the test statistic for which the null hypothesis is rejected. (The **non-rejection region** is defined analogously.)
One-sided vs. Two-sided tests
One-sided vs. Two-sided tests

- Let’s test whether a coin is biased. The null hypothesis is that the coin is fair.
- Possible alternative hypotheses include: $p_H > p_T$, $p_H < p_T$, and $p_H \neq p_T$.
- Assume all heads are observed
 - $p_H > p_T$: The null is rejected.
 - $p_H < p_T$: The null is not rejected.
 - $p_H \neq p_T$: The null is rejected.
- Assume all tails are observed
 - $p_H > p_T$: The null is not rejected.
 - $p_H < p_T$: The null is rejected.
 - $p_H \neq p_T$: The null is rejected.
Step 1: Formulate the Hypotheses

- Our null hypothesis is that the proportion of people that plan to vote for Trump is identical to the proportion of people that plan to vote for Clinton.
 - \(p_H = p_T \): i.e., \(p_{NULL} = 0 \)

- Our alternative hypothesis is that the proportion of people who plan to vote for Clinton is different than the proportion who plan to vote for Trump.
 - \(p_H \neq p_T \)
Step 3: Calculate the p-value

- What is the probability of observing this value of the test statistic?
 - $2 \times \text{pnorm}(-1.99) = 0.0465$

- Under the null hypothesis, there was only a 4.65% chance we would see data that favor Clinton as much or more than what we saw in the YouGov poll.

- This means one of two things:
 - We witnessed something incredibly rare.
 - The assumption that the null hypothesis is true is incorrect.
Chi-Squared Distribution

Reference: Inferential Thinking
Jurors in Alameda County

- A total of 1453 people reported for jury duty in Alameda County in Northern California between 2009 and 2010.

<table>
<thead>
<tr>
<th></th>
<th>Asian</th>
<th>Black</th>
<th>Latinx</th>
<th>White</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>15%</td>
<td>18%</td>
<td>12%</td>
<td>54%</td>
<td>1%</td>
</tr>
<tr>
<td>Jurors</td>
<td>26%</td>
<td>8%</td>
<td>8%</td>
<td>54%</td>
<td>4%</td>
</tr>
</tbody>
</table>

- Were juries representative of the population from which they were drawn?
Exploratory Data Analysis

<table>
<thead>
<tr>
<th></th>
<th>Asian</th>
<th>Black</th>
<th>Latinx</th>
<th>White</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>15%</td>
<td>18%</td>
<td>12%</td>
<td>54%</td>
<td>1%</td>
</tr>
<tr>
<td>Jurors</td>
<td>26%</td>
<td>8%</td>
<td>8%</td>
<td>54%</td>
<td>4%</td>
</tr>
</tbody>
</table>

![Bar chart](Image Source)
Pearson’s Chi-squared Test

- Tests whether the difference between the observed and expected frequencies of multiple categories is statistically significant.
- The multinomial distribution generalizes the binomial.
 - The binomial models the counts of flipping a coin \(n \) times
 - The multinomial models the counts of rolling a \(k \)-sided die \(n \) times
 - Bernoulli : binomial as categorical : multinomial
- **Null hypothesis**: Juror distribution is consistent with that of the population. I.e., jurors are distributed according to a multinomial with probabilities (0.15, 0.18, 0.12, 0.54, 0.01).
- The chi-squared test statistic measures the difference between the observed and the expected distributions.
Chi-squared Test Statistic

The value of the test-statistic is

\[\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i} = N \sum_{i=1}^{n} \frac{(O_i/N - p_i)^2}{p_i} \]

where

- \(\chi^2 \) Pearson's chi-squared test statistic
- \(O_i \) the number of observations of type \(i \)
- \(N \) the total number of observations
- \(E_i = Np_i \) the expected (theoretical) frequency of type \(i \), asserted by the null hypothesis, namely that the proportion of type \(i \) in the population is \(p_i \)
- \(n \) the number of types
Chi-squared Test Statistic, cont’d

- For Asians: \((26\% - 15\%)^2 / 15\% = 0.0807\)
- For Blacks: \((8\% - 18\%)^2 / 18\% = 0.0556\)
- For Latinx: \((8\% - 12\%)^2 / 12\% = 0.0133\)
- For Whites: \((54\% - 54\%)^2 / 54\% = 0\)
- For Others: \((1\% - 4\%)^2 / 4\% = 0.0225\)

The chi-square test statistic is thus:
\[1453 \times (0.0807 + 0.0556 + 0.0133 + 0.0225) = 250\]
Chi-squared Distribution

- The distribution of the sum of the squares of k independent standard normal random variables.
- The chi-square distribution is parameterized by degrees of freedom.

Image Source
Conclusion

- Choose $\alpha = 95\%$. Since there are 5 races, there are 4 degrees of freedom.
 - `qchisq(.95, df = 4)`

 [1] 9.487729

- Since $250 > 9.487729$, we reject the null hypothesis

- Likewise, the p-value is essentially 0:
 - `pchisq(250, df = 4, lower.tail = FALSE) = 6.50969e-53`

- We reject the null hypothesis:
 Juries were not racially representative in Alameda County in 2009 and 2010.
Future Work

•
“Innocent until proven guilty”

- Hypothesis testing is a statistical implementation of this maxim
- Null hypothesis: the defendant is innocent
- Alternative hypothesis: the defendant is guilty
 - A type 1 error (false positive) occurs when we put an innocent person in jail
 - A type 2 error (false negative) occurs when we do not jail a guilty person
- Another example:
 - Type 1 error: false alarm (fire alarm when there is no fire)
 - Type 2 error: fire but no fire alarm
- In sum:
 - Type 1 error: we reject the null hypothesis when we should not
 - Type 2 error: we do not reject the null hypothesis when we should
Type I vs. Type II Errors

- Cancer screening
 - Null hypothesis: no cancer
 - Type I: cancer suspected where there is none—not good, but not terrible
 - Type II: cancer goes undetected—very very bad

- Err on the side of type I errors
 - Make it easy to reject the null, even when we should not
 - Choose higher significance level (i.e., higher α)
Type I vs. Type II Errors

- Spam Filters
 - Null hypothesis: an email is legitimate
 - Type I: filter a legitimate email—could be very bad
 - Type II: don’t filter spam—not so bad

- Err on the side of type II errors
 - Make it hard to reject the null, even when we should
 - Choose lower significance level (i.e., lower α)
Type I vs. Type II Errors

● Suspected terrorists
 ○ Null hypothesis: person is not a terrorist
 ○ Type I: send an innocent person to Guantánamo Bay
 ○ Type II: let a terrorist (who intends to commit mass murder) free

● US has erred on the side of type I errors, which explains why people are often held at Guantánamo Bay without a fair trial
Statistical Power

<table>
<thead>
<tr>
<th>Null Hypothesis (H₀)</th>
<th>Accept H₀</th>
<th>Reject H₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>Correct</td>
<td>Type I Error</td>
</tr>
<tr>
<td>"Confidence Level"</td>
<td>"False Negative"</td>
<td>"False Positive"</td>
</tr>
<tr>
<td>Probability = 1-α</td>
<td></td>
<td>Probability = α</td>
</tr>
<tr>
<td>False</td>
<td>Type II Error</td>
<td>Correct</td>
</tr>
<tr>
<td>"False Negative"</td>
<td></td>
<td>"Statistical Power"</td>
</tr>
<tr>
<td>Probability = β</td>
<td></td>
<td>Probability = 1-β</td>
</tr>
</tbody>
</table>

The diagram illustrates the concept of statistical power, represented by the area under the curve for "Statistical Power" (1-β). The power is the probability of correctly rejecting the null hypothesis when it is false.
Statistical Power

By setting the Type I error rate, you indirectly influence the size of the Type II error rate as well.

It’s important to strike a balance between the risks of making Type I and Type II errors. Reducing the alpha always comes at the cost of increasing beta, and vice versa.
Statistical Power

- Null Hyp.
- Normal Variation
- Type I errors ↑
 - $\alpha = .10$
 - less proof to reject null.
 - Type I errors ↑
 - $\alpha \approx 10\%$ under N.M.
- Type II errors ↓
- $1 - \beta$ ↑
- Power ↑

Image Source