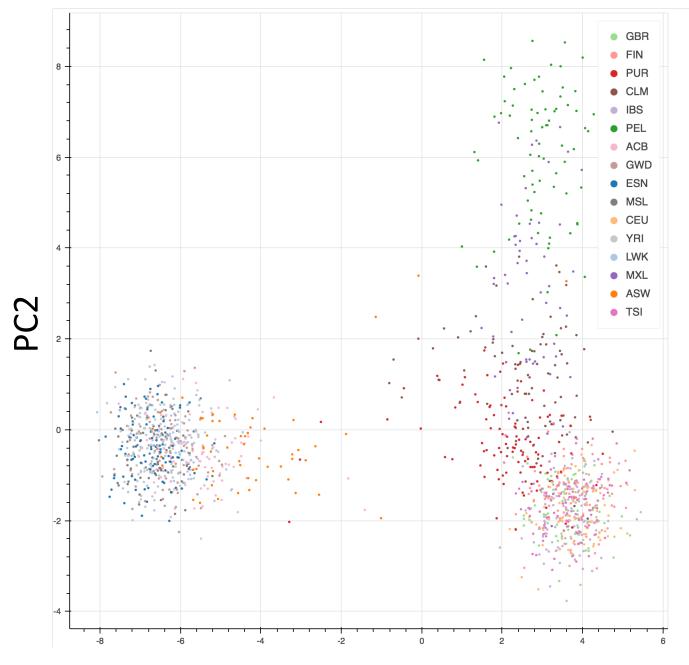
We reviewed properties of the SVD. Currently no slides for this part of the lecture. We also saw Kaileigh's presentation on an application of principal components analysis to a problem in population genetics. Her slides come next.

Principal Components Analysis (PCA) for Population Genetics


Presented by Kaileigh Ahlquist

Goal

- Visualize the data in two dimensions from a perspective that reveals important aspects of population structure. May be able to predict:
 - Geographic patterns of migration, trade and travel
 - Heritage of unknown or admixed individuals
- Use the resulting principal components to filter data for further analysis, removing locations that are not informative or redundant.

PCA using SVD

```
def PCA(data):
C = len(data.D[1])
mn = vec_of_row_means(data)
data = data - coldict2mat({i: mn for i in range(C)})
Y = transpose(data) * (1 / sqrt(C))
u, w, v = svd(Y)
PC_dict = mat2coldict(v)
return PC_dict
```


Results

	Utah Residents (CEPH) with Northern and	
CEU	Western European Ancestry	
TSI	Toscani in Italia	
FIN	Finnish in Finland	
GBR	British in England and Scotland	
IBS	Iberian Population in Spain	
YRI	Yoruba in Ibadan, Nigeria	
LWK	Luhya in Webuye, Kenya	
	Gambian in Western Divisions in the	
GWD	Gambia	
MSL	Mende in Sierra Leone	
ESN	Esan in Nigeria	
ASW	Americans of African Ancestry in SW USA	
ACB	African Caribbeans in Barbados	
MXL	Mexican Ancestry from Los Angeles USA	
PUR	Puerto Ricans from Puerto Rico	
CLM	Colombians from Medellin, Colombia	
PEL	Peruvians from Lima, Peru	

PC1

Principal Components

	PC1	PC2	
			-
θ	0.00339	-0.00426	
1	0.00263	0.0201	
10	-0.00229	9.89E-05	
100	-0.000349	-0.000163	
1000	0.000201	0.0115	
1001	0.00435	-0.000958	
1002	0.00135	-0.000712	
1003	-0.00498	-0.146	
1004	0.0465	0.0717	
1005	0.000131	-0.000262	
1006	0.000132	-0.000177	
1007	1.09E-34	4.77E-26	
1008	-0.00711	-0.092	
1009	-0.000315	-9.85E-05	
101	0.00262	-0.00394	
1010	0.0275	-0.0173	
1011	-0.0219	-0.00247	
1012	0.048	0.033	
1013	0.0413	-0.0241	
1014	-0.0609	0.0424	
1015	-0.00233	-0.01	
1016	0.00042	-0.000827	
1017	0.000426	-0.000939	
1018	-0.00412	0.000308	
1019	0.0922	-0.131	
102	9	1.03E-41	

Genomic locations like this one are very varied, 430 individuals had a 0 in this position, 692 had a 1 in this position and 338 had a 2 in this position. These SNPs may be important in understanding population structure.

Examining genomic locations like this one often reveals invariant sites: SNPs that don't display any differences at all in the population. I tested this one in particular and found that it was 0 in every individual in my sample. PCA can eliminate these unnecessary variables. The most famous use of SVD is in principal components analysis and its cousins. However, SVD is useful for more prosaic problems:

- Computing rank: rank is the number of singular values above some small specified tolerance.
- ► Useful in computing orthonormal bases of Null A and Col A.
- least-squares: unlike QR decomposition, SVD can be used even when matrix A does not have linearly independent columns.

Least squares via SVD

Algorithm for finding minimizer of $\|\mathbf{b} - A\mathbf{x}\|$:

Find compact singular value decomposition (U, Σ, V) of A return $V\Sigma^{-1}U^T \mathbf{b}$

Justification: Let \hat{x} be the vector returned by the algorithm.

$$\begin{aligned} A\hat{\mathbf{x}} &= (U\Sigma V^{T})(V\Sigma^{-1}U^{T}\mathbf{b}) \\ &= U\Sigma\Sigma^{-1}U^{T}b \\ &= UU^{T}\mathbf{b} \\ &= U(\text{coord. repr. of } \mathbf{b}^{||\text{Col } U} \text{ in terms of cols of } U) \\ &= \mathbf{b}^{||\text{Col } U} \end{aligned}$$

and Col U = Col A.

Claim: The choice of \hat{x} is the one minimizing $\|\hat{x}\|$.

We tried out deblurring. Currently no slides for this part of the lecture.