
We reviewed properties of the SVD. Currently no slides for this part of the lecture. We also saw
Kaileigh’s presentation on an application of principal components analysis to a problem in
population genetics. Her slides come next.



Principal Components 
Analysis (PCA) for 

Population Genetics
Presented by Kaileigh Ahlquist



Goal
• Visualize	the	data	in	two	dimensions	from	a	perspective	that	

reveals	important	aspects	of	population	structure.	May	be	

able	to	predict:

• Geographic	patterns	of	migration,	trade	and	travel

• Heritage	of	unknown	or	admixed	individuals

• Use	the	resulting	principal	components	to	filter	data	for	

further	analysis,	removing	locations	that	are	not	informative	

or	redundant.



PCA using SVD



CEU

Utah	Residents	(CEPH)	with	Northern	and	

Western	European	Ancestry

TSI Toscani	in	Italia

FIN Finnish	in	Finland

GBR British	in	England	and	Scotland

IBS Iberian	Population	in	Spain

YRI Yoruba	in	Ibadan,	Nigeria

LWK Luhya	in	Webuye,	Kenya

GWD

Gambian	in	Western	Divisions	in	the	

Gambia

MSL Mende	in	Sierra	Leone

ESN Esan	in	Nigeria

ASW Americans	of	African	Ancestry	in	SW	USA

ACB African	Caribbeans in	Barbados

MXL Mexican	Ancestry	from	Los	Angeles	USA

PUR Puerto	Ricans	from	Puerto	Rico

CLM Colombians	from	Medellin,	Colombia

PEL Peruvians	from	Lima,	Peru
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Principal Components

Examining	genomic	locations	like	this	one	often	reveals	

invariant	sites:	SNPs	that	don’t	display	any	differences	

at	all	in	the	population.	I	tested	this	one	in	particular	

and	found	that	it	was	0	in	every	individual	in	my	

sample.	PCA	can	eliminate	these	unnecessary	variables.

Genomic	locations	like	this	one	are	very	varied,	430	

individuals	had	a	0	in	this	position,	692	had	a	1	in	this	

position	and	338	had	a	2	in	this	position.	These	SNPs	

may	be	important	in	understanding	population	

structure.
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Uses of SVD

The most famous use of SVD is in principal components analysis and its cousins.
However, SVD is useful for more prosaic problems:

I Computing rank: rank is the number of singular values above some small specified
tolerance.

I Useful in computing orthonormal bases of Null A and Col A.

I least-squares: unlike QR decomposition, SVD can be used even when matrix A does not
have linearly independent columns.



Least squares via SVD

Algorithm for finding minimizer of kb� Axk:

Find compact singular value decomposition (U,⌃,V ) of A
return V⌃�1

U

T
b

Justification: Let x̂ be the vector returned by the algorithm.
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and Col U = Col A.

Claim: The choice of x̂ is the one minimizing kx̂k.



We tried out deblurring. Currently no slides for this part of the lecture.


