
Quiz

1. Write a procedure check least squares(A, x̂,b) with the following spec:
I

input: Mat A, Vec u, Vec b
I

output: True if u is the solution to the least-squares problem Ax ⇡ b, i.e. if u minimizes
kb� Auk2.

Assume that the vectors are legal, i.e. the domain of u equals the column label set of A
and the domain of b equals the row label set of A. Also assume that there is no
floating-point error, i.e. that all calculations are precisely correct. Do not assume that the
columns of A are linearly independent. Your procedure should not explicitly use any other
procedures. (Of course, it can use the usual operations on matrices and vectors.)

2. Suppose U and V are subspaces of W. What does it mean to say that V is the orthogonal
complement of U in W? Give the definition.



The Singular Value Decomposition

[11] The Singular Value Decomposition



The Singular Value Decomposition

Gene Golub’s license plate, photographed by Professor P. M. Kroonenberg of Leiden University.



Frobenius norm for matrices

We have defined a norm for vectors over R: k[x
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, x
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, . . . , xn]k =
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Now we define a norm for matrices: interpret the matrix as a vector.

kAkF =
p
sum of squares of elements of A

called the Frobenius norm of a matrix.
Squared norm is just sum of squares of the elements.

Example:
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Can group in terms of rows .... or columns
����

����


1 2 3
4 5 6

�����

����
2

F

= (12 + 22 + 32) + (42 + 52 + 62) = k[1, 2, 3]k2 + k[4, 5, 6]k2
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F

= (12 + 42) + (22 + 52) + (32 + 62) = k[1, 4]k2 + k[2, 5]k2 + k[3, 6]k2

Proposition: Squared Frobenius norm of a matrix is the sum of the squared norms of its rows
... or of its columns.
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Low-rank matrices

Saving space and saving time
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Silly compression

Represent a grayscale m⇥ n image by an m⇥ n matrix A. (Requires mn numbers to represent.)
Find a low-rank matrix Ã that is as close as possible to A. (For rank r , requires only r(m + n)
numbers to represent.)
Original image (625⇥ 1024, so about 625k numbers)



Silly compression

Represent a grayscale m⇥ n image by an m⇥ n matrix A. (Requires mn numbers to represent.)
Find a low-rank matrix Ã that is as close as possible to A. (For rank r , requires only r(m + n)
numbers to represent.)
Rank-50 approximation (so about 82k numbers)



The trolley-line-location problem

Given the locations of m houses a
1

, . . . ,am,
we must choose where to run a trolley line.

The trolley line must go through downtown (origin)
and must be a straight line.

The goal is to locate the trolley line so that it is as
close as possible to the m houses.

a1

a3

a4

a2

Specify line by unit-norm vector v: line is Span {v}.

In measuring objective, how to combine individual objectives?

As in least squares, we minimize the 2-norm of the vector [d
1

, . . . , dm] of distances.

Equivalent to minimizing the square of the 2-norm of this vector, i.e. d2
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+ · · ·+ d
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Solution to the trolley-line-location problem

For each vector ai , write ai = a

kv
i + a

?v
i where akvi is the projection of ai along v and a

?v
i is

the projection orthogonal to v.
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By the Pythagorean Theorem,
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Since the distance from ai to Span {v} is ka?vi k, we have
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using a

||v
i = hai , vi v and hence ka||vi k2 = hai , vi2 kvk2

= hai , vi2
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Solution to the trolley-line-location problem, continued

By dot-product interpretation of matrix-vector multiplication,
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We get P
i (distance from ai to Span {v})2 = ||A||2F � kAvk2

Therefore best vector v is a unit vector that maximizes ||Av||2 (equiv., maximizes ||Av||).
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Solution to the trolley-line-location problem, continued

P
i (distance from ai to Span {v})2 = ||A||2F � kAvk2

Therefore best vector v is a unit vector that maximizes ||Av||2 (equiv., maximizes ||Av||).

def trolley line location(A):
v

1

= argmax{||Av|| : ||v|| = 1}
�
1

= ||Av
1

||
return v

1

So far, this is a solution only in principle since we have not specified how to actually compute v
1

.

Definition: �
1

is first singular value of A, and v

1

is first right singular vector.



Trolley-line-location problem, example

Example: Let A =


1 4
5 2

�
, so a

1

= [1, 4] and a

2

= [5, 2].

A unit vector maximizing ||Av|| is v
1

⇡

.78
.63

�
.
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v1=[.777, .629]
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Theorem

def trolley line location(A):
v

1

= argmax{||Av|| : ||v|| = 1}
�
1

= ||Av
1

||
return v

1

Definition: �
1

is first singular value of A.
v

1

is first right singular vector.

Theorem: Let A be an m ⇥ n matrix over R with rows a
1

, . . . ,am. Let v1 be the first right
singular vector of A. Then Span {v

1

} is the one-dimensional vector space V that minimizes

(distance from a

1

to V)2 + · · ·+ (distance from am to V)2

How close is the closest vector space to the rows of A?

Lemma: The minimum sum of squared distances is ||A||2F � �2

1

.

Proof: The distance is
P

i ||ai ||2 �
P

i ||a
kv
i ||2.

The first sum is ||A||2F .
The second sum is square of ||Av

1

||, i.e. square of �
1

. QED



Example, continued

Let A =


1 4
5 2

�
) a

1

= [1, 4],a
2

= [5, 2]. Solution: v
1

⇡

.78
.63

�
. Sum of squared
distances?

Projection of a
1

orthogonal to v

1

:
a

1

� ha
1

, v
1

i v
1

⇡ [1, 4]� (1 · .78 + 4 · .63)[.78, .63]
⇡ [1, 4]� 3.3 [.78, .63]

⇡ [�1.6, 1.9]

Norm, about 2.5, is distance from a

1

to Span {v
1

}.
Projection of a

2

orthogonal to v

1

:
a

2

� ha
1

, v
1

i v
1

⇡ [5, 2]� (5 · .78 + 2 · .63)[.78, .63]
⇡ [5, 2]� 5.1 [.78, .63]

⇡ [1,�1.2]

Norm, about 1.6, is distance from a

2

to Span {v
1

}.
Thus the sum of squared distances is about 2.52 + 1.62, which is about 8.7.
Lemma says sum of squared distances should be
||A||2F � �2

1

⇡ (12 + 42 + 52 + 22)� 6.12 ⇡ 46� 6.12 ⇡ 8.7. X



Visualization of data in one dimension

Projections of high-dimensional data points a
1

, . . . ,am onto line: visualization technique.

Making the projections spread out means projections better capture original data.



Visualization of data in one dimension

Projections of high-dimensional data points a
1

, . . . ,am onto line: visualization technique.

Each datapoint ai is represented by a single number:
�i = hai , v1i

What do we know about these numbers?

v

1

is chosen among norm-1 vectors to maximize the sum of
squares of these numbers.

That is, we are choosing a line through the origin so as to
maximally spread out those numbers.
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σ1
σ2

σ3

σ4



Application to voting data

Let a
1

, . . . ,a
100

be the voting records for US Senators.
Same as you used in politics lab.
These are 46-vectors with ±1 entries.
Find the unit-norm vector v that minimizes least-squares distance from a

1

, . . . ,a
100

to
Span {v}.
Look at projection along v of each of these vectors.

Not so meaningful:
Snowe 0.106605199 moderate Republican from Maine
Lincoln 0.106694552 moderate Republican from Rhode Island
Collins 0.107039376 moderate Republican from Maine
Crapo 0.107259689 not so moderate Republican from Idaho
Vitter 0.108031374 not so moderate Republican from Louisiana

We’ll have to come back to this data.



Best rank-one approximation to a matrix

A rank-one matrix is a matrix whose row space is
one-dimensional.
All rows must lie in Span {v} for some vector v.
That is, every row is a scalar multiple of v.

outer product

2

4
u

3

5 ⇥
v

⇤

Goal: Given matrix A, find the rank-one matrix Ã that minimizes kA� ÃkF .

Ã =

2

64
vector in Span {v} closest to a

1

...
vector in Span {v} closest to am

3

75

How close is Ã to A?

||A� Ã||2F =
X

i

||row i of A� Ã||2

=
X

i

||distance from ai to Span {v}||2

To minimize the sum of squares of
distances, choose v to be first right
singular vector. Sum of squared
distances is ||A||2F � �2

1

.
Ã= closest rank-one matrix.



An expression for the best rank-one approximation

Using the formula a

kv
1

i = hai , v1i v1, we obtain
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Using the linear-combinations interpretation of
vector-matrix multiplication, we can write this
as an outer product of two vectors:
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The first vector in the outer product can be
written as Av
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. We obtain

Ã =

2

66664
Av

1

3

77775

⇥
v

T
1

⇤

Remember �
1

= kAv
1

k. Define u
1

to be the
norm-one vector such that �

1

u

1

= Av

1

. Then
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