
Quiz

Let q1, . . . ,qn be orthonormal vectors in Rm. Let V = Span {q1, . . . ,qn}.
I What does “orthonormal” mean?

I Show:

There is a matrix M such that, for any vector b in Rm, the the coordinate
representation of b||V in terms of q1, . . . ,qn can be written as Mb.

Be sure to explain.

Projection onto columns of a column-orthogonal matrix

Suppose q1, . . . ,qn are orthonormal vectors.

Projection of b onto qj is b||qj = σj qj where σj =

〈
qj ,b

〉
〈qj ,qj〉

=
〈
qj ,b

〉
Vector [σ1, . . . , σn] can be written using dot-product definition of matrix-vector multiplication: σ1

...
σn

 =

 q1 · b
...

qn · b

 =

 qT
1
...

qT
n

 b

and linear combination σ1 q1 + · · ·+ σn qn =

q1 · · · qn

 σ1

...
σn

Towards QR factorization
Orthogonalization of columns of matrix A gives us a representation of A as product of

I matrix with mutually orthogonal columns

I invertible triangular matrix
v1 v2 v3 · · · vn

=

v∗1 v∗2 v∗3 · · · v∗n

1 α12 α13 α1n

1 α23 α2n

1 α3n

. . .

αn−1,n
1

Suppose columns v1, . . . , vn are linearly independent. Then v∗1, . . . , v

∗
n are nonzero.

I Normalize v∗1, . . . , v
∗
n (Matrix is called Q)

I To compensate, scale the rows of the triangular matrix. (Matrix is R)

The result is the QR factorization.
Q is a column-orthogonal matrix and R is an upper-triangular matrix.

Towards QR factorization
Orthogonalization of columns of matrix A gives us a representation of A as product of

I matrix with mutually orthogonal columns

I invertible triangular matrix
v1 v2 v3 · · · vn

=

q1 q2 q3 · · · qn

‖v∗1‖ β12 β13 β1n
‖v∗2‖ β23 β2n

‖v∗3‖ β3n
. . .

βn−1,n
‖v∗n‖

Suppose columns v1, . . . , vn are linearly independent. Then v∗1, . . . , v

∗
n are nonzero.

I Normalize v∗1, . . . , v
∗
n (Matrix is called Q)

I To compensate, scale the rows of the triangular matrix. (Matrix is R)

The result is the QR factorization.
Q is a column-orthogonal matrix and R is an upper-triangular matrix.

Using the QR factorization to solve a matrix equation Ax = b
First suppose A is square and its columns are linearly independent.
Then A is invertible.
It follows that there is a solution (because we can write x = A−1b)
QR Solver Algorithm to find the solution in this case:

Find Q,R such that A = QR and Q is column-orthogonal and R is triangular
Compute vector c = QTb
Solve Rx = c using backward substitution, and return the solution.

Why is this correct?

I Let x̂ be the solution returned by the algorithm.
I We have R x̂ = QTb
I Multiply both sides by Q: Q(R x̂) = Q(QTb)
I Use associativity: (QR)x̂ = (QQT)b
I Substitute A for QR: Ax̂ = (QQT)b
I Since Q and QT are inverses, we know QQT is identity matrix: Ax̂ = 1b

Thus Ax̂ = b.

Solving Ax = b

What if columns of A are not independent?

Let v1, v2, v3, v4 be columns of A.

Suppose v1, v2, v3, v4 are linearly dependent.

Then there is a basis consisting of a subset, say v1, v2, v4
 v1 v2 v3 v4

x1
x2
x3
x4

 : x1, x2, x3, x4 ∈ R

 =

 v1 v2 v4

 x1
x2
x4

 : x1, x2, x4 ∈ R

Therefore: if there is a solution to Ax = b then there is a solution to A′x′ = b where columns
of A′ are a subset basis of columns of A (and x′ consists of corresponding variables).
So solve A′x′ = b instead.

The least squares problem
Suppose A is an m × n matrix and its columns
are linearly independent.

Since each column is an m-vector, dimension of
column space is at most m, so n ≤ m.

What if n < m? How can we solve the matrix
equation Ax = b?

Remark: There might not be a solution:

I Define f : Rn −→ Rm by f (x) = Ax
I Dimension of Im f is n

I Dimension of co-domain is m.

I Thus f is not onto.

 1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

x1
x2
x3
x4
x5

 = b

1 2 3
4 5 6
7 8 9

10 11 12

 x1

x2
x3

 = b

Goal: An algorithm that, given a matrix A whose columns are linearly independent and given b,
finds the vector x̂ minimizing ‖b− Ax̂‖.

Solution: Same algorithm as we used for square A

The least squares problem

Recall...

High-Dimensional Fire Engine Lemma: The point in a vector space V closest to b is b||V

and the distance is ‖b⊥V‖.

Given equation Ax = b, let V be the column space of A.

We need to show that the QR Solver Algorithm returns a vector x̂ such that Ax̂ = b||V .

Projection onto columns of a column-orthogonal matrix

Suppose q1, . . . ,qn are orthonormal vectors.

Projection of b onto qj is b||qj = σj qj where σj =

〈
qj ,b

〉
〈qj ,qj〉

=
〈
qj ,b

〉
Vector [σ1, . . . , σn] can be written using dot-product definition of matrix-vector multiplication: σ1

...
σn

 =

 q1 · b
...

qn · b

 =

 qT
1
...

qT
n

 b

and linear combination σ1 q1 + · · ·+ σn qn =

q1 · · · qn

 σ1

...
σn

QR Solver Algorithm for Ax ≈ b
Summary:

I QQTb = b||

Proposed algorithm:

Find Q,R such that A = QR and Q is column-orthogonal and R is triangular
Compute vector c = QTb
Solve Rx = c using backward substitution, and return the solution x̂.

Goal: To show that the solution x̂ returned is the vector that minimizes ‖b− Ax̂‖

Every vector of the form Ax is in Col A (= Col Q)

By the High-Dimensional Fire Engine Lemma, the vector in Col A closest to b is b||, the
projection of b onto Col A.

Solution x̂ satisfies R x̂ = QTb

Multiply by Q: QR x̂ = QQTb

Therefore Ax̂ = b||.

Least squares when columns are linearly dependent?

This comes up, e.g. ranking sports teams.
Need a more sophisticated algorithm.
We’ll see it soon.

The Normal Equations

Let A be a matrix with linearly independent columns. Let QR be its QR factorization. We have
given one algorithm for solving the least-squares problem Ax ≈ b:

Find Q,R such that A = QR and Q is column-orthogonal and R is triangular
Compute vector c = QTb
Solve Rx = c using backward substitution, and return the solution x̂.

However, there are other ways to find solution.

Not hard to show that

I ATA is an invertible matrix

I The solution to the matrix-vector equation (ATA)x = ATb is the solution to the
least-squares problem Ax ≈ b

I Can use another method (e.g. Gaussian elimination) to solve (AT)x = ATb

The linear equations making up ATAx = ATb are called the normal equations.

Application of least squares: linear regression
Finding the line that best fits some two-dimensional data.

Data on age versus brain
mass from the Bureau of
Made-up Numbers:

age brain mass

45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f (x) be the function that predicts brain mass for someone of age
x .
Hypothesis: after age 45, brain mass decreases linearly with age, i.e.
that f (x) = mx + b for some numbers m, b.
Goal: find m, b to as to minimize the sum of squares of prediction
errors
The observations are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8),
(x3, y3) = (65, 3.75),(x4, y4) = (75, 3.5), (x5, y5) = (85, 3.3).
The prediction error on the i th observation is |f (xi)− yi |.
The sum of squares of prediction errors is

∑
i (f (xi)− yi)

2.

For each observation, measure the difference between the
predicted and observed y -value. In this application, this
difference is measured in pounds. Measuring the distance
from the point to the line wouldn’t make sense.

Application of least squares: linear regression
Finding the line that best fits some two-dimensional data.

Data on age versus brain
mass from the Bureau of
Made-up Numbers:

age brain mass

45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f (x) be the function that predicts brain mass for someone of age
x .
Hypothesis: after age 45, brain mass decreases linearly with age, i.e.
that f (x) = mx + b for some numbers m, b.
Goal: find m, b to as to minimize the sum of squares of prediction
errors
The observations are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8),
(x3, y3) = (65, 3.75),(x4, y4) = (75, 3.5), (x5, y5) = (85, 3.3).
The prediction error on the i th observation is |f (xi)− yi |.
The sum of squares of prediction errors is

∑
i (f (xi)− yi)

2.

For each observation, measure the difference between the
predicted and observed y -value. In this application, this
difference is measured in pounds. Measuring the distance
from the point to the line wouldn’t make sense.

Application of least squares: linear regression
Finding the line that best fits some two-dimensional data.

Data on age versus brain
mass from the Bureau of
Made-up Numbers:

age brain mass

45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f (x) be the function that predicts brain mass for someone of age
x .
Hypothesis: after age 45, brain mass decreases linearly with age, i.e.
that f (x) = mx + b for some numbers m, b.
Goal: find m, b to as to minimize the sum of squares of prediction
errors
The observations are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8),
(x3, y3) = (65, 3.75),(x4, y4) = (75, 3.5), (x5, y5) = (85, 3.3).
The prediction error on the i th observation is |f (xi)− yi |.
The sum of squares of prediction errors is

∑
i (f (xi)− yi)

2.

years

po
un
ds

For each observation, measure the difference between the
predicted and observed y -value. In this application, this
difference is measured in pounds. Measuring the distance
from the point to the line wouldn’t make sense.

Linear regression

To find the best line for given data (x1, y1),(x2, y2),(x3, y3),(x4, y4),(x5, y5),
solve this least-squares problem

x1 1
x2 1
x3 1
x4 1
x5 1

[
m
b

]
≈

y1
y2
y3
y4
y5

The dot-product of row i with the vector [m, b] is mxi + b, i.e. the
value predicted by f (x) = mx + b for the i th observation.

Therefore, the vector of predictions is A

[
m
b

]
.

The vector of differences between predictions and observed values is A

[
m
b

]
−

y1
y2
y3
y4
y5

, and the

sum of squares of differences is the squared norm of this vector.
Therefore the method of least squares can be used to find the pair (m, b) that minimizes the
sum of squares, i.e. the line that best fits the data.

Application of least squares: coping with approximate data
Recall the industrial espionage problem: finding the number of each product being produced
from the amount of each resource being consumed.

Let M =

metal concrete plastic water electricity

garden gnome 0 1.3 .2 .8 .4
hula hoop 0 0 1.5 .4 .3

slinky .25 0 0 .2 .7
silly putty 0 0 .3 .7 .5

salad shooter .15 0 .5 .4 .8

We solved uTM = b where b is vector giving amount of each resource consumed:

b =
metal concrete plastic water electricity

226.25 1300 677 1485 1409.5

solve(M.transpose(), b) gives us u ≈ gnome hoop slinky putty shooter

1000 175 860 590 75

Application of least squares: industrial espionage problem

More realistic scenario: measurement of resources consumed is approximate

True amounts: b =
metal concrete plastic water electricity

226.25 1300 677 1485 1409.5

Solving with true amounts gives
gnome hoop slinky putty shooter

1000 175 860 590 75

Measurements: b̃ =
metal concrete plastic water electricity

223.23 1331.62 679.32 1488.69 1492.64

Solving with measurements gives
gnome hoop slinky putty shooter

1024.32 28.85 536.32 446.7 594.34

Slight changes in input data leads to pretty big changes in output.

Output data not accurate, perhaps not useful! (see slinky, shooter)

Question: How can we improve accuracy of output without more accurate measurements?

Answer: More measurements!

Application of least squares: industrial espionage problem
Have to measure something else, e.g. amount of waste water produced

metal concrete plastic water electricity waste water

garden gnome 0 1.3 .2 .8 .4 .3
hula hoop 0 0 1.5 .4 .3 .35

slinky .25 0 0 .2 .7 0
silly putty 0 0 .3 .7 .5 .2

salad shooter .15 0 .5 .4 .8 .15

Measured: b̃ =
metal concrete plastic water electricity waste water

223.23 1331.62 679.32 1488.69 1492.64 489.19

Equation u ∗M = b̃ is more constrained ⇒ has no solution

but least-squares solution is
gnome hoop slinky putty shooter

1022.26 191.8 1005.58 549.63 41.1

True amounts:
gnome hoop slinky putty shooter

1000 175 860 590 75

Better output accuracy with same input accuracy

Application of least squares: Sensor node problem
Recall sensor node problem: estimate current draw for each hardware component
Define D = {’radio’, ’sensor’, ’memory’, ’CPU’}.
Goal: Compute a D-vector u that, for each hardware component, gives the current drawn by
that component.
Four test periods:

I total mA-seconds in these test periods b = [140, 170, 60, 170]
I for each test period, vector specifying how long each hardware device was operating:

duration1 = Vec(D, ’radio’:0.1, ’CPU’:0.3)

duration2 = Vec(D, ’sensor’:0.2, ’CPU’:0.4)

duration3 = Vec(D, ’memory’:0.3, ’CPU’:0.1)

duration4 = Vec(D, ’memory’:0.5, ’CPU’:0.4)

To get u, solve Ax = b where

A =

duration1
duration2
duration3
duration4

Application of least squares: Sensor node problem

If measurement are exact, get back true current draw for each hardware component:

b = [140, 170, 60, 170]

solve Ax = b

radio sensor CPU memory

500 250 300 100

More realistic: approximate measurement

b̃ = [141.27, 160.59, 62.47, 181.25]

solve Ax = b̃

radio sensor CPU memory

421 142 331 98.1

How can we get more accurate results?

Solution: Add more test periods and solve least-squares problem

Application of least squares: Sensor node problem
duration1 = Vec(D, ’radio’:0.1, ’CPU’:0.3)

duration2 = Vec(D, ’sensor’:0.2, ’CPU’:0.4)

duration3 = Vec(D, ’memory’:0.3, ’CPU’:0.1)

duration4 = Vec(D, ’memory’:0.5, ’CPU’:0.4)

duration5 = Vec(D, ’radio’:0.2, ’CPU’:0.5)

duration6 = Vec(D, ’sensor’:0.3, ’radio’:0.8, ’CPU’:0.9, ’memory’:0.8)

duration7 = Vec(D, ’sensor’:0.5, ’radio’:0.3, ’CPU’:0.9, ’memory’:0.5)

duration8 = Vec(D, ’radio’:0.2, ’CPU’:0.6)

Let A =

duration1
duration2
duration3
duration4
duration5
duration6
duration7
duration8

Measurement vector is
b̃ = [141.27, 160.59, 62.47, 181.25, 247.74, 804.58, 609.10, 282.09]

Now Ax = b̃ has no solution.
But solution to least-squares problem is

radio sensor CPU memory

451.40 252.07 314.37 111.66
True solution is

radio sensor CPU memory

500 250 300 100

Better output accuracy with same input accuracy

Applications of least squares: breast cancer machine-learning problem

Recall: breast-cancer machine-learning lab

Input: vectors a1, . . . ,am giving features of specimen, values b1, . . . , bm specifying +1
(malignant) or -1 (benign)

Informal goal: Find vector w such that sign of ai ·w predicts sign of bi

Formal goal: Find vector w to minimize sum of squared errors
(b1 − a1 ·w)2 + · · ·+ (bm − am ·w)2

Approach: Gradient descent

Results: Took a few minutes to get a solution with error rate around 7%

Can we do better with least squares?

Applications of least squares: breast cancer machine-learning problem

Goal: Find the vector w that minimizes (b[1]− a1 ·w)2 + · · ·+ (b[m]− am ·w)2

Equivalent: Find the vector w that minimizes

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 b

−
 a1

...
am

 x

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

This is the least-squares problem.

Using the algorithm based on QR factorization takes a fraction of a second and gets a solution
with smaller error rate.

Even better solutions using more sophisticated techniques in linear algebra:

I Use an inner product that better reflects the variance of each of the features.

I Use linear programming

I Even more general: use convex programming

Rating sports teams: Use of least squares when columns are linearly
dependent

Duke Miami UNC UVA VT

Duke 7-52 21-24 7-38 0-45
Miami 52-7 34-16 25-17 27-7
UNC 24-21 16-34 7-5 3-30
UVA 38-7 17-25 5-7 14-52
VT 45-0 7-27 30-3 52-14

Compute ratings ri for teams using Massey’s equation: ri − rj predicts score difference when
team i plays team j .

Duke Miami UNC UVA VT

Duke | 0 -45 -3 -31 -45

Miami | 45 0 18 8 20

UNC | 3 -18 0 2 -27

UVA | 31 -8 -2 0 -38

VT | 45 -20 27 38 0

Deblurring

Can we reverse the blurring process?

Use of least squares when columns are linearly dependent

Suppose columns are linearly dependent.

Then a given vector in the column space can be represented in multiple ways as a linear
combination of columns.

Thus least-squares solution is not unique.

Which solution should we seek?

We’ll end up finding the solution with the smallest norm.

