
Gaussian elimination: recording the transformations

2

4 A

3

5 =

2

4 U1

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U2

3

5

2

4 M2

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U3

3

5

2

4 M3

3

5

2

4 M2

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U4

3

5

Gaussian elimination: recording the transformations

2

4 A

3

5 =

2

4 U1

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U2

3

5

0

@

2

4 M2

3

5

2

4 M1

3

5

1

A

2

4 A

3

5 =

2

4 U3

3

5

Gaussian elimination: recording the transformations

2

4 A

3

5 =

2

4 U1

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U2

3

5

2

4 M2M1

3

5

2

4 A

3

5 =

2

4 U3

3

5

2

4 M3

3

5

2

4 M2M1

3

5

2

4 A

3

5 =

2

4 U4

3

5

Gaussian elimination: recording the transformations

2

4 A

3

5 =

2

4 U1

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U2

3

5

2

4 M3M2M1

3

5

2

4 A

3

5 =

2

4 U4

3

5

Gaussian elimination: recording the transformations2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 -2.5 0 1

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
0 �2.5 0 �10.5 �2

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 0 4 �5 �2
0 �2.5 0 �10.5 �2

3

775

Gaussian elimination: recording the transformations2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 -2.5 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
0 �2.5 0 �10.5 �2

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 0 4 �5 �2
0 �2.5 0 �10.5 �2

3

775

Gaussian elimination: recording the transformations2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
5 0 0 2 8

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
0 �2.5 0 �10.5 �2

3

775

2

664

1 0 0 0
0 1 0 0
.5 0 1 0
0 0 0 1

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 -2.5 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 0 4 �5 �2
0 �2.5 0 �10.5 �2

3

775

Gaussian elimination: recording the transformations2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
5 0 0 2 8

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
0 �2.5 0 �10.5 �2

3

775

2

664

1 0 0 0
0 1 0 0
.5 -2 1 0
0 -2.5 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 0 4 �5 �2
0 �2.5 0 �10.5 �2

3

775

Failure of Gaussian elimination
But we compute using floating-point numbers!

2

4
10�20 0 1
1 1020 1
0 1 �1

3

5)

2

4
10�20 0 1
0 1020 1� 1020

0 1 �1

3

5

)

2

4
10�20 0 1
0 1020 �1020

0 1 �1

3

5)

2

4
10�20 0 1
0 1020 �1020

0 0 0

3

5

Gaussian elimination got the wrong answer due to round-o↵ error.

These problems can be mitigated by choosing the pivot element carefully:
I Partial pivoting: Among rows with nonzero entries in column c , choose row with entry

having largest absolute value.
I Complete pivoting: Instead of selecting order of columns beforehand, in each iteration

choose column to maximize absolute value of pivot element.
In this course, we won’t study these techniques in detail.
Instead, we will use Gaussian elimination only for GF (2).

The black box starts to become less opaque

The modules independence and solver both Gaussian elimination when working over GF (2):

I The procedure solve(A, b) computes a matrix M such that MA is in echelon form, and
uses M to try to find a solution.

I The procedure rank(L) converts to echelon form and counts the nonzero rows to find the
rank of L.

We saw that Gaussian elimination can be used to find a nonzero vector in the null space of a
matrix.... You will use this in an algorithm for factoring integers.

The black box starts to become less opaque

The modules independence and solver both Gaussian elimination when working over GF (2):

I The procedure solve(A, b) computes a matrix M such that MA is in echelon form, and
uses M to try to find a solution.

I The procedure rank(L) converts to echelon form and counts the nonzero rows to find the
rank of L.

We saw that Gaussian elimination can be used to find a nonzero vector in the null space of a
matrix.... You will use this in an algorithm for factoring integers.

Other uses of Gaussian elimination over GF (2)

Simple examples of other uses of Gaussian elimination over GF (2):

I Solving Lights Out puzzles.

I Attacking Python’s pseudo-random-number generator:

>>> import random

>>> random.getrandbits(32)

1984256916

>>> random.getrandbits(32)

4135536776

>>> random.getrandbits(32)

What are the next thirty-two bits to be generated? Using Gaussian elimination, you can
predict them accurately.

I Breaking simple authentication scheme (playing the role of Eve)....

Factoring integers
Prime Factorization Theorem: For every integer N � 1, there is a unique bag of prime
numbers whose product is N.
Example:

I 75 is the product of the elements in the bag {3, 5, 5}
I 126 is the product of the elements in the bag {2, 3, 3, 7}
I 23 is the product of the elements in the bag {23}

All the elements in a bag must be prime. If N is itself prime, the bag for N is just {N}.

“The problem of distinguishing prime numbers from composite numbers

and of resolving the latter into their prime factors is known to be one of

the most important and useful in arithmetic. It has engaged the industry

and wisdom of ancient and modern geometers to such an extent that it

would be superfluous to discuss the problem at length Further, the

dignity of the science itself seems to require solution of a problem so

elegant and so celebrated.”

Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801

def factor(N):

for d in range(2, N-1):

if N % d == 0: return d

Factoring integers
Prime Factorization Theorem: For every integer N � 1, there is a unique bag of prime
numbers whose product is N.
Example:

I 75 is the product of the elements in the bag {3, 5, 5}
I 126 is the product of the elements in the bag {2, 3, 3, 7}
I 23 is the product of the elements in the bag {23}

All the elements in a bag must be prime. If N is itself prime, the bag for N is just {N}.

“Because both the system’s privacy and the security of digital
money depend on encryption, a breakthrough in mathematics or
computer science that defeats the cryptographic system could be a
disaster. The obvious mathematical breakthrough would be the
development of an easy way to factor large prime numbers.”

(Bill Gates, The Road Ahead, 1995).

Secure Sockets Layer

Secure communication with websites uses HTTPS (Secure HTTP)

which is based on SSL (Secure Sockets Layer)

which is based on the RSA (Rivest-Shamir-Adelman) cryptosystem

which depends on the computational di�culty of factoring integers

Factoring integers

Testing whether a number is prime is now well-understood and easy.

Here’s a one-line Python script that gives false positives when input is a Carmichael number
(rare) and otherwise with probability 1

220 :

def is_prime(p, n=20): return all([pow(randint(1,p-1),p-1,p) == 1

for i in range(n)])

With a few more lines, can get correct answers for Carmichael numbers as well.

The hard part of factoring seems to be this: given an integer N, find any nontrivial divisor
(divisor other than 1 and N).

If you can do that reliably, you can factor.

Factoring integers the naive way

def factor(N):

for d in range(2, N-1):

if N % d == 0: return d

If d is a divisor of N then so is N/d .

min{d ,N/d}
p
N

This shows that it su�ces to search among 2, 3, . . . , int(
p
N)

def factor(N):

for d in range(2, intsqrt(N)):

if N % d == 0: return d

where intsqrt(N) is a procedure I provide

Useful subroutine: gcd(m,n)

gcd(m,n) return the greatest common divisor of positive integers m and n. This algorithm is
attributed to Euclid, and it is very fast. Here’s the code:

def gcd(x,y): return x if y == 0 else gcd(y, x % y)

Example:

I gcd(12, 16) is 4

I gcd(276534813447635747652, 333070702552660863114) is 18172055646

Using square roots to factor N
Find integers a and b such that

a2 � b2 = N

for then
(a� b)(a+ b) = N

so a� b and a+ b are divisors (ideally nontrivial)

How to find such integers? Naive approach...

I Choose integer a slightly more than
p
N

I Check if
p
a2 � N is an integer.

I If so, let b =
p
a2 � N Success! ,

Now a� b is a divisor of N

I If not, repeat with another value for a

Example: N = 77

a = 9p
a2 � N =

p
4 = 2

so let b = 2
a� b = 7 is a divisor of N
Example: N = 23 · 41
a = 31) a2 � N = 18 /
a = 32) a2 � N = 81 ,

For large N, it takes too long to find a good integer a. /
We will show how linear algebra , helps us synthesize a good integer a.

Using square roots to factor N
Find a and b such that

a2 � b2 = kN

for some integer k . Then
(a� b)(a+ b) = kN

{prime factors of a� b} [{prime factors of a+ b} = {prime factors of k} [{prime factors of N}
Suppose {prime factors of N} = {p, q}.

If

I p and q are both factors of a� b, or

I p and q are both factors of a+ b

then gcd(a� b,N) will not find a nontrivial divisor.
However, if

I p is a factor of a� b and q is a factor of a+ b, or

I p is a factor of a+ b and q is a factor of a� b

then gcd(a� b,N) will find a nontrivial divisor.

Example:: N = 7 · 11
k = 2 · 3 · 5 · 13

if a�b = 2 ·7 ·11 and a+b = 3 ·5 ·13
then gcd(a� b,N) = N /
if a� b = 2 · 5 · 11 and
a+ b = 3 · 7 · 13

then gcd(a� b,N) = 11 ,

How to find integers a, b such that a2 � b2 = kN
Idea: Start by finding the first thousand prime numbers p1, . . . , p1000.

I Choose a
I Compute a2 � N.
I See if a2 � N can be factored using only p1, . . . , p1000
I If not, throw it away.
I If so, record a and the factorization of a2 � N

Repeat a thousand and one times

a a ⇤ a� N factorization
51 182 2 · 7 · 13
52 285 3 · 5 · 19
53 390 2 · 3 · 5 · 13
58 945 33 · 5 · 7
61 1302 2 · 3 · 7 · 31
62 1425 3 · 52 · 19
63 1550 2 · 52 · 31
67 2070 2 · 32 · 5 · 23
68 2205 32 · 5 · 72
71 2622 2 · 3 · 19 · 23

Now we want to find a subset {a1, . . . , ak} such that
(a21 � N) · · · (a2k � N) is a perfect square.

Combine a1 = 52, a2 = 67, a3 = 71

(a21�N)(a22�N)(a23�N) = (3·5·19)(2·32·5·23)(2·3·19·23)
= 22 · 34 · 52 · 192 · 232 = (2 · 32 · 5 · 19 · 23)2

How to find a subset that works?

Finding a subset that works
Represent each factorization as a vector over GF (2):
Represent pa11 pa22 · · · pakk by {p1 : (a1 % 2), p2 : (a2 % 2) . . . , pk : (ak % 2)}
Let A = matrix whose rows are these vectors.
A subset of factorizations whose product is a perfect square = a subset of A’s rows whose sum
is the zero vector
Therefore need to find a nonzero vector in {u : u ⇤ A = 0}
If number of rows > rank of matrix then there exists such a nonzero vector.

a a ⇤ a� N factorization vector.f
51 182 2 · 7 · 13 {2 : one, 13 : one, 7 : one}
52 285 3 · 5 · 19 {19 : one, 3 : one, 5 : one}
53 390 2 · 3 · 5 · 13 {2 : one, 3 : one, 5 : one, 13 : one}
58 945 33 · 5 · 7 {3 : one, 5 : one, 7 : one}
61 1302 2 · 3 · 7 · 13 {31 : one, 2 : one, 3 : one, 7 : one}
62 1425 3 · 52 · 19 {19 : one, 3 : one, 5 : 0}
63 1550 2 · 52 · 31 {2 : one, 5 : 0, 31 : one}
67 2070 2 · 32 · 5 · 23 {2 : one, 3 : 0, 5 : one, 23 : one}
68 2205 32 · 5 · 72 {3 : 0, 5 : one, 7 : 0}
71 2622 2 · 3 · 19 · 23 {19 : one, 2 : one, 3 : one, 23 : one}

Improving on the simple authentication scheme
• Password is an n-vector x̂ over GF (2)
• Challenge: Computer sends random n-vector a
• Response: Human sends back a · x̂.
Repeat until Computer is convinced that Human
knows password x̂.

Eve eavesdrops on communication,
learns m pairs a1, b1, . . . ,am, bm
such that bi is right response to challenge ai

The password x̂ is a solution to2

64
a1
...
am

3

75

| {z }
A

2

4
x

3

5 =

2

64
b1
...
bm

3

75

| {z }
b

Once rank A reaches n, the solution is unique, and
Eve can use Gaussian elimination to find it.

Making the scheme more secure:

The way to make the scheme more secure
is to introduce mistakes.

I In about 1/6 of the rounds, randomly,
Human sends the wrong dot-product.

I Computer is convinced if Human gets
the right answers 75% of the time.

Even if Eve knows that Human is making
mistakes, she doesn’t know which rounds
involve mistakes.

Gaussian elimination does not find the
solution when some of the right-hand side
values bi are wrong.

In fact, we don’t know any e�cient
algorithm Eve can use to find the solution.

Threshold secret-sharing

All-or-nothing secret-sharing is a method to split the secret into two pieces so that both are
required to recover the secret.

We could generalize to split the secret among four teaching assistants (TAs), so that jointly
they could recover the secret but any three cannot.

However, it is risky to rely on all four TAs showing up for a meeting.

Instead we want a threshold secret-sharing scheme: share a secret among four TAs so that

I any three TAs could jointly recover the secret, but

I any two TAs could not.

There are such schemes that use fields other than GF (2), but let’s see if we can do it using
GF (2).

Threshold secret-sharing using five 3-vectors over GF (2)
Failing attempt: Here’s an idea: select five 3-vectors over GF (2) a0,a1,a2,a3,a4.

These vectors are supposed to satisfy the following requirement:

Requirement: every set of three are linearly independent.

To share a one-bit secret s among the TAs, I
randomly select a 3-vector u such that
a0 · u = s. I keep u secret, but I compute the
other dot-products:

�1 = a1 · u
�2 = a2 · u
�3 = a3 · u
�4 = a4 · u

I give the bit �1 to TA 1, I give �2 to TA 2, I
give �3 to TA 3, and I give �4 to TA 4.
The bit given to a TA is her share.

Can any three TAs recover the secret?
For example, suppose TAs 1, 2, and 3 want to
recover the secret. They solve the matrix-vector
equation

2

4
a1

a2

a3

3

5

2

4
x1
x2
x3

3

5 =

2

4
�1
�2
�3

3

5

Since the matrix is square and the rows
a1,a2,a3 are linearly independent, the matrix is
invertible, so u is the only solution. The TAs
use solve to recover u, and take the
dot-product with a0 to get the secret s.

Is the secret safe?
Now suppose two rogue TAs, TA 1 and TA 2, decide they want to obtain the secret without
involving either of the other TAs. They know �1 and �2. Can they use these to get the secret s?
The answer is no: their information is consistent with both s = 0 and s = 1. Since the matrix

2

4
a0

a1

a2

3

5

is invertible, each of the two matrix equations
2

4
a0

a1

a2

3

5

2

4
x0
x1
x2

3

5 =

2

4
0
�1
�2

3

5

2

4
a0

a1

a2

3

5

2

4
x0
x1
x2

3

5 =

2

4
1
�1
�2

3

5

has a solution. The solution to the first equation is a vector v such that a0 · v = 0, and the
solution to the second equation is a vector v such that a0 · v = 1.

Threshold secret-sharing with five pairs of 6-vectors
The proposed scheme seems to work. The catch is that first step:
• Select five 3-vectors over GF (2) a0,a1,a2,a3,a4 satisfying

Requirement: every set of three are linearly independent.

Unfortunately, there are no such five vectors.

Instead, we seek ten 6-vectors a0,b0,a1,b1,a2,b2,a3,b3,a4,b4 over GF (2).

We think of them as forming five pairs:

I Pair 0 consists of a0 and b0,
I Pair 1 consists of a1 and b1,
I Pair 2 consists of a2 and b2, and
I Pair 3 consists of a3 and b3.
I Pair 4 consists of a4 and b4.

The requirement is as follows:

Requirement: For any three pairs, corre-
sponding six vectors are linearly indep.

To share two bits s and t:

• I choose a secret 6-vector u such that
a0 · u = s and b0 · u = t.

• I give TA 1 the two bits �1 = a1 · u and
�1 = b1 · u, I give TA 2 the two bits
�2 = a2 · u and �2 = b2 · u, and so on.

Each TA’s share consists of a pair of bits.

Threshold secret-sharing with five pairs of 6-vectors: recoverability

Any three TAs jointly can solve a matrix-vector equation with a 6⇥ 6 matrix to obtain u,
whence they can obtain the secret bits s and t. Suppose, for example, TAs 1, 2, and 3 came
together. Then they would solve the equation

2

6666664

a1

b1

a2

b2

a3

b3

3

7777775

2

6666664

x

3

7777775
=

2

6666664

�1
�1
�2
�2
�3
�3

3

7777775

to obtain u and thereby obtain the secret bits. Since the vectors a1,b1,a2,b2,a3,b3 are
linearly independent, the matrix is invertible, so there is a unique solution to this equation.

Threshold secret-sharing with five pairs of 6-vectors: recoverability
Suppose TAs 1 and 2 go rogue and try to recover s and t. They possess the bits �1, �1,�2, �2.
Are these bits consistent with s = 0 and t = 1? They are if there is a vector u that solves the
equation 2

6666664

a0

b0

a1

b1

a2

b2

3

7777775

2

6666664

x

3

7777775
=

2

6666664

0
1
�1
�1
�2
�2

3

7777775

where the first two entries of the right-hand side are the guessed values of s and t.

Since the vectors a0,b0,a1,b1,a2,b2 are linearly independent, the matrix is invertible, so a
solution exists.

Similarly, no matter what you put in the first two entries of the right-hand side, there is exactly
one solution.

This shows that the shares of TAs 1 and 2 tell them nothing about the true values of s and t.
The secret is safe.

The Inner Product

[8] The Inner Product

Continuing to look inside the black box

We studied Gaussian elimination, which is used in modules solver and independence when
working over GF (2).
We next study the methods used in these modules when working over R.

Fire Engine problem

There is a burning house located at coordinates [2, 4]!

A street runs near the house, along the line through the origin
and through [6, 2]—but it is near enough?

Fire engine has a hose 3.5 units long.

If we can navigate the fire engine to the point on the line
nearest the house, will the distance be small enough to save
the house?

We’re faced with two questions: what point along the line is
closest to the house, and how far is it?

-1 0 1 2 3 4 5 6

-1

1

2

3

4

5

6

house b

road (line through origin and v)

where on line is
the closest point?

how far?

What do we mean by closest?

Distance, length, norm, inner product

We will define the distance between two vectors p and b to be the length of the di↵erence p�b.

This means that we must define the length of a vector.

Instead of using the term “length” for vectors, we typically use the term norm.

The norm of a vector v is written kvk
Since it plays the role of length, it should satisfy the following norm properties:
Property N1 kvk is a nonnegative real number.
Property N2 kvk is zero if and only if v is a zero vector.
Property N3 for any scalar ↵, k↵ vk = |↵|kvk.
Property N4 ku+ vk kuk+ kvk (triangle inequality).
One way to define vector norm is to define an operation on vectors called inner product.
Inner product of vectors u and v is written

hu, vi

The inner product must satisfy certain axioms, which we outline later.

No way to define inner product for GF (2) so no more GF (2) /

From inner product to norm

For the real numbers and complex numbers, we have some flexibility in defining the inner
product.

This flexibility is used heavily, e.g. in Machine Learning.

Once we have defined an inner product, the norm of a vector u is defined by

kvk =
p

hv, vi

For simplicity, we will focus on R and will use the most natural and convenient definition of
inner product.

This definition leads to the norm of a vector being the geometric length of its arrow.

For vectors over R, we define our inner product as the dot-product:

hu, vi = u · v

Properties of inner product of vectors over R

I linearity in the first argument: hu+ v,wi = hu,wi+ hv,wi
I symmetry: hu, vi = hv,ui
I homogeneity: h↵u, vi = ↵ hu, vi

For inner product = dot-product, can easily prove these properties.

From inner product to norm

We have defined hu, vi = u ·v and kvk =
p
hv, vi Does this norm satisfy the norm properties?

Property N1: ||v|| is a nonnegative real number.
Property N2: ||v|| is zero if and only if v is a zero vector.
Property N3: for any scalar ↵, ||↵ v|| = |↵|||v||.
Property N4: ku+ vk kuk+ kvk (triangle inequality).

Write v = [v1, v2, . . . , vn]. Then k[v1, v2, . . . , vn]k =
q
v21 + v22 + · · ·+ v2n

1. Sum of squares is a nonnegative real number so kvk is nonnegative real number.
2. If any entry vi of v is nonzero then sum of squares is nonzero, so norm is nonzero.
3. Proof of third property:

||↵ v||2 = h↵ v,↵ vi by definition of norm

= ↵ hv,↵ vi by homogeneity of inner product

= ↵ (↵ hv, vi) by symmetry and homogeneity (again) of inner product

= ↵2||v||2 by definition of norm

Thus ||↵ v|| = ↵ ||v||. We skip the proof of fourth property.

Norm is geometric length of arrow

Example: What is the length of the vector u = [u1, u2]?

Remember the Pythagorean Theorem:

for a right triangle with side-lengths a, b, c , where c
is the length of the hypotenuse,

a2 + b2 = c2

We can use this equation to calculate the length of u:

(length of u)2 = u21 + u22

So this notion of length agrees with the one we learned in
grade school, at least for vectors in R2.

u

[u1, u2]

u1

u2

Orthogonality

Orthogonal is linear-algebra-ese for perpendicular.
We’ll define it so as to make Pythagorean Theorem true.
Let u and v be vectors. Their lengths are ||u|| and ||v||.
Draw the corresponding arrows, and the arrow for u+ v
The arrow for u+ v is the “hypotenuse”. (The triangle is not
necessarily a right angle.)
The squared length of the vector u+ v (the “hypotenuse”) is

u

v

u+v

||u+ v||2 = hu+ v,u+ vi
= hu,u+ vi+ hv,u+ vi by linearity of inner product in 1st argument

= hu,ui+ hu, vi+ hv,ui+ hv, vi by symmetry and linearity

= ||u||2 + 2 hu, vi+ ||v||2 by symmetry

The last expression is ||u||2 + ||v||2 if and only if hu, vi = 0.
We therefore define u and v to be orthogonal if hu, vi = 0.
Pythagorean Theorem for vectors: if vectors u and v over the reals are orthogonal then
||u+ v||2 = ||u||2 + ||v||2.

Properties of orthogonality

To solve the Fire Engine Problem, we will use the Pythagorean Theorem in conjunction with the
following simple observations:

Orthogonality Properties:

Property O1: If u is orthogonal to v then u is orthogonal to ↵ v for every scalar ↵.

Property O2: If u and v are both orthogonal to w then u+ v is orthogonal to w.

Proof:

1. hu,↵ vi = ↵ hu, vi = ↵ 0 = 0

2. hu+ v,wi = hu,wi+ hv,wi = 0 + 0

Example: [1, 2] · [2,�1] = 0 so [1, 2] · [20,�10] = 0

Example:
[1, 2, 1] · [1,�1, 1] = 0
[0, 1, 1] · [1,�1, 1] = 0

([1, 2, 1] + [0, 1, 1]) · [1,�1, 1] = 0

