
Playing with C: Reflecting about the real/imaginary axis

Reflecting about the real axis: Use complex conjugate z 7! z̄



Playing with C: Multiplying complex numbers by a positive real number

Multiply each complex number by 0.5

f (z) = 0.5 z

Arrow in same direction but half the length. Scaling



Playing with C: Multiplying complex numbers by a negative number

Multiply each complex number by -1

f (z) = (�1) z

Arrow in opposite direction
Rotation by 180 degrees



Playing with C: Multiplying by i: rotation by 90 degrees

How to rotate counterclockwise by 90�?

Need x + y i 7! �y + x i

Use i(x + y i) = x i+ y i
2
= x i� y

f (z) = i z



Playing with C: The unit circle in the complex plane: argument and angle

What about rotating by another angle?

Definition: Argument of z is the angle in radians between z arrow and 1 + 0i arrow.

argument of z

z

argument of zz argument of z

z

Rotating a complex number z means increasing its argument.



Playing with C: Euler’s formula

“He calculated just as men breathe, as eagles
sustain themselves in the air.”
Said of Leonhard Euler

Euler’s formula: For any real number ✓,

e✓ i
is the point z on the unit circle with argument ✓.

z = ei �
4

✓ = �
4

e = 2.718281828...



Playing with C: Euler’s formula

Euler’s formula: For any real number ✓,

e✓ i
is the point z on the unit circle with argument ✓.

Plug in ✓ = ⇡....

photo by Cory Doctorow

z = ei�

= �1

e to the ⇡ times i (http://xkcd.com/179/)



Playing with C: Euler’s formula

Plot

e0·
2⇡i
20

, e1·
2⇡i
20 , e2·

2⇡i
20 , e3·

2⇡i
20 , . . . , e19·

2⇡i
20



Playing with C: Rotation by ⌧ radians

Back to question of rotation by any angle ⌧ .

I Every complex number can be written in the form z = re

✓i

I r is the absolute value of z
I ✓ is the argument of z

I Need to increase the argument of z

I Use exponentiation law e

a · eb = e

a+b

I
re

✓i · e⌧ i = re

✓i+⌧ i = re

(✓+⌧)i

I f (z) = z · e⌧i does rotation by angle ⌧ .



Playing with C: Rotation by ⌧ radians

Rotation by 3⇡/4



Rotation of Complex Numbers activity

You want a function that rotates by angle ⇡/4.

1. For what number ⌧ is the function z 7! e⌧iz?

2. For input z = 3e(⇡/3)i, what is the output of the rotation function?

3. Draw a diagram of the complex plane showing
I the circle of radius 1, and
I the input and output points.



Transformations of complex numbers

I
Translation: Move a point a specific distance in a specific direction done by
adding a specific complex number z 7! z + z0

I
Reflection: Reflect about real axis:take the complex conjugate z 7! z̄

I
Scaling: Increase coordinates by a factor Multiply by a positive real number
z 7! az

I
Rotatiion: Rotate about the origin Multiply by a complex number with absolute

value 1 z 7! e✓iz



Probability distribution function
A special kind of function is a probability distribution function.
It is used to specify relative likelihood of di↵erent outcomes of a single experiment.
It assigns a probability (a nonnegative number) to each possible outcome.
The probabilities of all the possible outcomes must sum to 1.
Example:

Probability distribution function for drawing a letter at beginning of the board game
Scrabble:

A 9 B 2 C 2 D 4 E 12 F 2 G 3 H 2
I 9 J 1 K 1 L 4 M 2 N 6 O 8 P 2
Q 1 R 6 S 4 T 6 U 4 V 2 W 2 X 1
Y 2 Z 1

Since the total number of tiles is 98, the probability of drawing an E is 12/98, the
probability of drawing an A is 9/98, etc. In Python:

{’A’:9/98, ’B’:2/98, ’C’:2/98, ’D’:4/98, ’E’:12/98, ’F’:2/98,

’G’:3/98, ’H’:2/98, ’I’:9/98, ’J’:1/98, ’K’:1/98, ’L’:1/98,

’M’:2/98, ’N’:6/98, ’O’:8/98, ’P’:2/98, ’Q’:1/98, ’R’:6/98,

’S’:4/98, ’T’:6/98, ’U’:4/98, ’V’:2/98, ’W’:2/98, ’X’:1/98,

’Y’:2/98, ’Z’:1/98}



Probability distribution function: Uniform distributions

Often the probability distribution is a uniform distribution. That means it assigns the
same probability to each outcome.

To
model rolling a die, the possible outcomes are 1, 2, 3, 4, 5, and 6, and the probabilities are

Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = 1/6 .

In Python,

>>> Pr = {1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}

To model the flipping of two coins, the possible outcomes are HH, HT, TH, TT and
the probability of all outcomes is 1/4.
In Python,

>>> Pr = {(’H’, ’H’):1/4, (’H’, ’T’):1/4,

(’T’, ’H’):1/4, (’T’, ’T’):1/4}



Outcome space

The set of all possible outcomes is called the outcome set ⌦. .

Examples:

I
Drawing a letter in Scrabble: ⌦ = {blank,A,B ,C , . . . ,Z}

I
Flipping a coin: ⌦ = {H,T}

I
Flipping two coins: ⌦ = {H,T} ⇥ {H,T}

I
Rolling a die: ⌦ =

⇢
, , , , ,

�

I
Rolling two dice: ⌦ =

⇢
, , , , ,

�
⇥
⇢

, , , , ,

�



Random variables

A random variable is a function whose domain is the outcome set ⌦.

Examples:

I
Drawing a letter in Scrabble: One random variable is the score per tile:
blank 7! 0,A 7! 1,B 7! 3,C 7! 3,D 7! 2,E 7! 1,D 7! 4, . . . ,Z 7! 10

I
Rolling two dice:

I One random variable is the total number of pips:✓
,

◆
7! 2,

✓
,

◆
7! 3,

✓
,

◆
7! 3, . . . ,

✓
,

◆
7! 12

I Another random variable is the di↵erence in number of pips:✓
,

◆
7! 0,

✓
,

◆
7! 1,

✓
,

◆
7! 1, . . . ,

✓
,

◆
7! 0



Probability distribution for a random variable

I If we know probability distribution for the outcome space ⌦,

I then we can infer probability distribution for the random variable.

Examples:

I
Number of pips on two dice: What is the probability of getting 4? Well, how
can that happen?

I Outcomes that result in value being 4:

✓
,

◆
,

✓
,

◆
,

✓
,

◆

I Each of these outcomes has probability 1
36 .

I Total probability of value being 4: 1
36 + 1

36 + 1
36 = 3

36



Playing with GF (2): Encryption
Alice wants to arrange with Bob to communicate one bit p (the plaintext).
To ensure privacy, they use a cryptosystem:

I Alice and Bob agree beforehand on a secret key k .

I Alice encrypts the plaintext p using the key k , obtaining
the cyphertext c according to the table

p k c

0 0 0
0 1 1
1 0 1
1 1 0

Q: Can Bob uniquely decrypt the cyphertext?
A: Yes: for any value of k and any value of c , there is just one consistent value for p.

An eavesdropper, Eve, observes the value of c (but does not know the key k).
Question: Does Eve learn anything about the value of p?
Simple answer: No:

I if c = 0, Eve doesn’t know if p = 0 or p = 1 (both are consistent with c = 0).
I if c = 1, Eve doesn’t know if p = 0 or p = 1 (both are consistent with c = 1).

More sophisticated answer: It depends on how the secret key k is chosen.
Suppose k is chosen by flipping a coin:

Probability is 1
2 that k = 0

Probability is 1
2 that k = 1

There are two possibilities:
I Suppose p = 0. Then (looking at first two rows of encryption table)

Probability is 1
2 that c = 0

Probability is 1
2 that c = 1

I Now suppose p = 1. Then (looking at last two rows of encryption table)
Probability is 1

2 that c = 1
Probability is 1

2 that c = 0
Thus the choice of the value of p does not a↵ect the probability distribution of c .
This shows that Eve learns nothing about p from observing c . Perfect secrecy!



Playing with GF (2): One-to-one and onto function and perfect secrecy

What is it about this cryptosystem that leads to perfect
secrecy? Why does Eve learn nothing from eavesdropping?

p k c

0 0 0
0 1 1
1 0 1
1 1 0

Define f0 : GF (2) �! GF (2) by
f0(k) =encryption of p = 0 with key k

According to the first two rows of the table,
f0(0) = 0 and f0(1) = 1

This function is one-to-one and onto.
When key k is chosen uniformly at random

Prob[k = 0] = 1
2 ,Prob[k = 1] = 1

2
the probability distribution of the output
f0(k) = p is also uniform:
Prob[f0(k) = 0] = 1

2 ,Prob[f0(k) = 1] = 1
2

Define f1 : GF (2) �! GF (2) by
f1(k) =encryption of p = 1 with key k

According to the last two rows of the table,
f1(0) = 1 and f1(1) = 0

This function is one-to-one and onto.
When key k is chosen uniformly at random

Prob[k = 0] = 1
2 ,Prob[k = 1] = 1

2
the probability distribution of the output
f1(k) = p is also uniform:
Prob[f1(k) = 1] = 1

2 ,Prob[f1(k) = 0] = 1
2

The probability distribution of the cyphertext does not depend on the plaintext!



Perfect secrecy

Idea is the basis for cryptosystem: the one-time pad.

If each bit is encrypted with its own one-bit key, the
cryptosystem is unbreakable

p k c

0 0 0
0 1 1
1 0 1
1 1 0

In the 1940’s the Soviets started re-using bits of key that had already been used.

Unfortunately for them, this was discovered by the US Army’s Signal Intelligence
Service in the top-secret VENONA project.

This led to a tiny but historically significant portion of the Soviet tra�c being cracked,
including intelligence on

I spies such as Julius Rosenberg and Donald Maclean, and

I Soviet espionage on US technology including nuclear weapons.

The public only learned of VENONA when it was declassified in 1995.



The Vector

[2] The Vector



The Vector: William Rowan Hamilton

By age 5, Latin, Greek,
and Hebrew
By age 10, twelve lan-
guages including Per-
sian, Arabic, Hindustani
and Sanskrit.

William Rowan Hamilton, the inventor of the theory of quaternions... and the plaque
on Brougham Bridge, Dublin, commemorating Hamilton’s act of vandalism.

i2 = j2 = k2 = ijk = �1

And here there dawned on me the notion that we must admit, in some sense, a fourth
dimension of space for the purpose of calculating with triples ... An electric circuit
seemed to close, and a spark flashed forth.



The Vector: Josiah Willard Gibbs

Started at Yale at 15
Got Ph.D. at Yale at 24
(1st engineering doctorate in US)
Tutored at Yale
Spent three years in Europe
Returned to be professor at Yale

Developed vector analysis as an alternative to
quaternions.

His unpublished notes were passed around for
twenty years.

“Professor Willard Gibbs must be ranked as one of the retarders of ... progress
in virtue of his pamphlet on Vector Analysis; a sort of hermaphrodite monster.”
(Peter Guthrie Tait, a partisan of quaternions)



What is a vector?
I This is a 4-vector over R:

[3.14159, 2.718281828,�1.0, 2.0]

I We will often use Python’s lists to represent vectors.

I Set of all 4-vectors over R is written R4.

I This notation might remind you of the notation RD : the set of functions from D
to R.



Vectors are functions

Think of our 4-vector [3.14159, 2.718281828,�1.0, 2.0] as the function

0 7! 3.14159, 1 7! 2.718281828, 2 7! �1.0, 3 7! 2.0

Fd is notation for set of functions from {0, 1, 2, . . . , d � 1} to F.

Example: GF (2)5 is set of 5-element bit sequences, e.g. [0,0,0,0,0], [0,0,0,0,1], ...

Let WORDS = set of all English words
In information retrieval, a document is represented (“bag of words” model) by a
function f : WORDS �! R specifying, for each word, how many times it appears in
the document.
We would refer to such a function as a WORDS-vector over R

Definition: For a field F and a set D, a D-vector over F is a function from D to F.
The set of such functions is written FD

For example, RWORDS



Representation of vectors using Python dictionaries

We often use Python’s dictionaries to represent such functions, e.g.
{0:3.14159, 1:2.718281828, 2:-1.0, 3:2.0}

What about representing a WORDS-vector over R?

For any single document, most words are not represented. They should be mapped to
zero.

Our convention for representing vectors by dictionaries: we are allowed to omit
key-value pairs when value is zero.

Example: “The rain in Spain falls mainly on the plain” would be represented by the
dictionary

{’on’: 1, ’Spain’: 1, ’in’: 1, ’plain’: 1, ’the’: 2,

’mainly’: 1, ’rain’: 1, ’falls’: 1}



Sparsity

A vector most of whose values are zero is called a sparse vector.
If no more than k of the entries are nonzero, we say the vector is k-sparse.

A k-sparse vector can be represented using space proportional to k .

Example: when we represent a corpus of documents by WORD-vectors, the storage
required is proportional to the total number of words in all documents.

Most signals acquired via physical sensors (images, sound, ...) are not exactly sparse.

Later we study lossy compression: making them sparse while preserving perceptual
similarity.



What can we represent with a vector?

I Document (for information retrieval)

I Binary string (for cryptography/information theory)

I Collection of attributes
I Senate voting record
I demographic record of a consumer
I characteristics of cancer cells

I State of a system
I Population distribution in the world
I number of copies of a virus in a computer network
I state of a pseudorandom generator
I state of Lights Out

I Probability distribution, e.g. {1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}



What can we represent with a vector?

I Image
{(0,0): 0, (0,1): 0, (0,2): 0, (0,3): 0,

(1,0): 32, (1,1): 32, (1,2): 32, (1,3): 32,

(2,0): 64, (2,1): 64, (2,2): 64, (2,3): 64,

(3,0): 96, (3,1): 96, (3,2): 96, (3,3): 96,

(4,0): 128, (4,1): 128, (4,2): 128, (4,3): 128,

(5,0): 160, (5,1): 160, (5,2): 160, (5,3): 160,

(6,0): 192, (6,1): 192, (6,2): 192, (6,3): 192,

(7,0): 224, (7,1): 224, (7,2): 224, (7,3): 224 }



What can we represent with a vector?

I Points

I Can interpret the 2-vector [x , y ] as a point in the plane.

I Can interpret 3-vectors as points in space, and so on.



Representing points

I List of 2-element lists:

>>> L = [[2, 2], [3, 2], [1.75, 1], [2, 1], [2.25, 1], [2.5, 1],

[2.75, 1], [3, 1], [3.25, 1]]

I Use the plot module to plot these 2-vectors.

>>> plot(L, 5)



Vector addition: Translation and vector addition

With complex numbers, translation achieved by adding a complex number, e.g.
f (z) = z + (1 + 2i)
Let’s do the same thing with vectors...

Definition of vector addition:

[u1, u2, . . . , un] + [v1, v2, . . . , vn] = [u1 + v1, u2 + v2, . . . , un + vn]

For 2-vectors represented in Python as 2-element lists, addition procedure is

def add2(v,w): return [v[0]+w[0], v[1]+w[1]]



Vector addition: Translation and vector addition

Quiz: Suppose we represent n-vectors by n-element lists. Write a procedure

addn(v, w)

to compute the sum of two vectors so represented.

Answer:

def addn(v, w): return [v[i]+w[i] for i in range(len(v))]


