CS 33

Data Representation, Part 2

CS33 Intro to Computer Systems Vi1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Numeric Ranges

* Unsigned Values

_ Two’s Complement Values
— UMin = 0

0000 — TMin = —2w
v 5 1 100...0
— — w _
U11a1x1 _TMax = 2w1_1
011...1
e Other Values
— Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FFF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1 FF FF| 11111111 11111111
0 0| OO0 00| 00000000 00000000
CS33 Intro to Computer Systems VIlI-2

Values for Different Word Sizes

W

8 16 32 64

UMax 255 65,535

4,294,967,295

18,446,744,073,709,551,615

TMax 127

32,767

2,147,483,647

9,223,372,036,854,775,807

TMin -128

-32,768

-2,147,483,648

-9,223,372,036,854,775,808

 Observations

* CProgramming

| TMin | = TMax + 1 * #include <limits.h>
» Asymmetric range declares constants, e.g.,
UMax = 2* TMax + 1 * ULONG_MAX
¢ LONG_MAX
¢ LONG_MIN

* values platform-specific

CS33 Intro to Computer Systems VIII-3

Quiz 1

 What is —TMin (assuming two’s complement
signed integers)?
a) TMin
b) TMax
c) 0
d) 1

CS33 Intro to Computer Systems Vill-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

4-Bit Computer Arithmetic

Sighed vs. Unsighed in C

« Constants
— by default are considered to be signed integers

— unsigned if have “U” as suffix
0U, 42949672590
« Casting
— explicit casting between signed & unsigned
int tx, ty;
unsigned ux, uy; // “unsigned” means “unsigned int”
tx = (int) ux;

uy = (unsigned int) ty;

— implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

CS33 Intro to Computer Systems VIlI-6

Casting Surprises

 Expression evaluation

— if there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

— including comparison operations <, >, ==, <=, >=
— examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

CS33 Intro to Computer Systems VII-7

Sign Extension
« Task:

— given w-bit signed integer x
— convert it to w+k-bit integer with same value
* Rule:

— make k copies of sign bit:
[—
_X - XW—1 yunny XW—1’XW—1’XW—2""’ Xo

L) <€ W
k copies of MSB X oo
X’ oo o oo o0

<€ > €
k w

CS33 Intro to Computer Systems VIII-8

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) vy;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

« Converting from smaller to larger integer data type
— C automatically performs sign extension

CS33 Intro to Computer Systems VIII-9

Does it Work?
_ w-1 w=2 A
val, = =2 +2i=0 b2

w

val , = -2"+2"" + :2191. 2!

_ w-1 w-2 A

- -2 +2-=o b2

_ w+l w w-1 w=2 i
val, , =-2""+2"+2" + Ei=0 b, -2

2742y N 2

=0

2 :
b2

=0

W_

_ 2w—1 +

CS33 Intro to Computer Systems VIiI-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Power-of-2 Multiply with Shift

* Operation
—u << kgivesu * 2k
— both signed and unsigned k

l/t o 0 o

operands: w bits

* 2k O YY) O 1 O YY)

true product: w+k bits U S X Of eee

discard k bits: w bits UMult, (u , 2%) ooo O] eee

TMult, (u , 2%)
« Examples

u << == u * 8
uUu<<5-u<<3=u* 24

— most machines shift and add faster than multiply
» compiler generates this code automatically

CS33 Intro to Computer Systems ViI-11

Unsigned Power-of-2 Divide with Shift

* Quotient of unsigned by power of 2

-u >> kgives |u / 2|
— uses logical shift

k
4 u AL L binary point

operandas:

p / 2k Y O 1 O Y O O

7
division: u/ 2k e« 1010 cee | 1P| ee
result: | u/ 2| e« 1010
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 59.4257813 59 00 3B| 00000000 00111011

CS33 Intro to Computer Systems

VIII-12

Signed Power-of-2 Divide with Shift
* Quotient of signed by power of 2

-x > kgives | x / 2|

— uses arithmetic shift
— rounds wrong direction whenx < 0

k
X Ll oo binary point
operands: yP
/ 2k eee |0]110] eee 0
division: x / 2k oo L (oo
result: RoundDown(x / 2K) oo oo
Division [Computed Hex Binary

y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 [-59.4257813 -60 FF C4| 11111111 11000100

CS33 Intro to Computer Systems

VIII-13

Correct Power-of-2 Divide

* Quotient of negative number by power of 2
—want [x / 2k] (round toward 0)

— compute as | (x+2k-1)/ 2k|
» inC: (x + (1<<k)-1) >> k
» biases dividend toward 0

Case 1: no rounding

dividend: y L1 eee [10] - [0I0
+2k_1 O (YY) 1 (YY) 1 1
1 oo AT ess [1[1] binary point
divisor: [2k 101 eee 0l .- [0[0
|- U / 2k -| 1 (YY) 1 (YY) (YY) 1 1

Biasing has no effect

CS33 Intro to Computer Systems

VIII-14

Correct Power-of-2 Divide (Cont.)

Case 2: rounding

k
dividend: x U
+2k_1 O ooo O O 1 ooo 1 1
1
1§ J
incremented by 1
incremented by binary point
divisor: /| 2k 1Q] <= [0[1]10] --- [0]Q /
|-X/2k-| 11 eee 11111 YY) "
1§ J

Y
incremented by 1

Biasing adds 1 to final result

CS33 Intro to Computer Systems VIill-15

Why Should | Use Unsigned?

 Don’t use just because number nonnegative
— easy to make mistakes

unsigned i;
for (i = cnt-2; 1 >= 0; 1--)
al[i] += a[i+1l];
— can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; 1i-DELTA >= 0; i-= DELTA)

Do use when performing modular arithmetic
— multiprecision arithmetic

Do use when using bits to represent sets
— logical right shift, no sign extension

CS33 Intro to Computer Systems VIlI-16

Byte-Oriented Memory Organization

 Programs refer to data by address

— conceptually, envision it as a very large array of bytes
» in reality, it’s not, but can think of it that way

— an address is like an index into that array
» and, a pointer variable stores an address

* Note: system provides private address spaces to each
“process”

— think of a process as a program being executed
— s0, a program can clobber its own data, but not that of others

CS33 Intro to Computer Systems VII-17

Machine Words

* Any given computer has a “word size”

— nominal size of integer-valued data
» and of addresses

— until recently, most machines used 32 bits (4 bytes)
as word size

» limits addresses to 4GB (232 bytes)
» becomes too small for memory-intensive applications

 leading to emergence of computers with 64-bit word
size

— machines still support multiple data formats
» fractions or multiples of word size
» always integral number of bytes

CS33 Intro to Computer Systems VIII-18

Word-Oriented Memory

izati 32-bit 64-bit
Organization S b Bytes Addr.

« Addresses specify byte Addr 0000
locations = DU
0000 0002

— address of first byte in word Addr -
— addresses of successive words 0000 0004
differ by 4 (32-bit) or 8 (64-bit) Addr 0005
00_04 0006

0007

0008

Addr 0009

0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

CS33 Intro to Computer Systems VIII-19

Byte Ordering

* Four-byte integer
— 0x76543210

 Stored at location 0x100

— which byte is at 0x100?
— which byte is at 0x103?

10

32

54

76

7 0x100 0x101 0x102 0x103
N

76

54

32

10

0x100 0x101 0x102 0x103

Little-endian

|)

Big-endian K/

CS33 Intro to Computer Systems

VIII-20

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byte Ordering (2)

Big Endian
e ’
00 00 00 01

Little Endian

CS33 Intro to Computer Systems Vii-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Quiz 2

int main() {
long x=1;
proc (x) ;

return 0O;

void proc (int arg) {

printf ("sd\n", arg);

What value is printed
on a big-endian 64-bit
computer?

a) 0

b) 1

c) 232

d) 2321

CS33 Intro to Computer Systems

VIII-22

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

