
 CS33 Intro to Computer Systems VIII–1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation, Part 2

 CS33 Intro to Computer Systems VIII–2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Numeric Ranges
•  Unsigned Values

– UMin = 0
000…0

– UMax = 2w – 1
111…1

•  Two’s Complement Values
–  TMin = –2w–1

100…0
–  TMax = 2w–1 – 1

011…1
•  Other Values

– Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values	for	W	=	16	

 CS33 Intro to Computer Systems VIII–3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Values for Different Word Sizes

•  Observations
|TMin | = TMax + 1

»  Asymmetric range
UMax = 2 * TMax + 1

	 W	
	 8	 16	 32	 64	

UMax	 255	 65,535	 4,294,967,295	 18,446,744,073,709,551,615	
TMax	 127	 32,767	 2,147,483,647	 9,223,372,036,854,775,807	
TMin	 -128	 -32,768	 -2,147,483,648	 -9,223,372,036,854,775,808	

	
	

•  C	Programming	
•  #include	<limits.h>	
•  declares	constants,	e.g.,	

•  ULONG_MAX	
•  LONG_MAX	
•  LONG_MIN	

•  values	plaBorm-specific	

 CS33 Intro to Computer Systems VIII–4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Quiz 1

•  What is –TMin (assuming two’s complement
signed integers)?
a)  TMin
b)   TMax
c)  0
d)   1

 CS33 Intro to Computer Systems VIII–5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

4-Bit Computer Arithmetic
0

0

3 3
4 4

7
7

8
-8

11
 -5

12

-4

15
-1

0000

0011
0100

0111 1000

10
11

11
00

1111

 CS33 Intro to Computer Systems VIII–6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C
•  Constants

–  by default are considered to be signed integers
–  unsigned if have “U” as suffix

0U, 4294967259U

•  Casting
–  explicit casting between signed & unsigned

int tx, ty;
unsigned ux, uy; // “unsigned” means “unsigned int”
tx = (int) ux;
uy = (unsigned int) ty;

–  implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

 CS33 Intro to Computer Systems VIII–7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

•  Expression evaluation
–  if there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned
–  including comparison operations <, >, ==, <=, >=
– examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0
 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

 == unsigned
 < signed
 > unsigned
 > signed
 < unsigned
 > signed
 > unsigned
 < unsigned
 > signed

Casting Surprises

 CS33 Intro to Computer Systems VIII–8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Sign Extension
•  Task:

–  given w-bit signed integer x
–  convert it to w+k-bit integer with same value

•  Rule:
– make k copies of sign bit:
–  X ʹ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k	copies	of	MSB	 • • • X

X ʹ • • • • • •

• • •

w	

w	k	

 CS33 Intro to Computer Systems VIII–9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Sign Extension Example

•  Converting from smaller to larger integer data type
– C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

 CS33 Intro to Computer Systems VIII–10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Does it Work?
valw = − 2w−1 + bi ⋅2

i

i=0

w−2
∑

valw+1 = − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

valw+2 = − 2w+1 + 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

 CS33 Intro to Computer Systems VIII–11 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Power-of-2 Multiply with Shift
•  Operation

– u << k gives u * 2k

–  both signed and unsigned

•  Examples
u << 3 == u * 8
u << 5 - u << 3 == u * 24

– most machines shift and add faster than multiply
»  compiler generates this code automatically

• • •
0 0 1 0 0 0 •••

u
2k*

u * 2ktrue	product:	w+k		bits	

operands:	w	bits	

discard	k		bits:	w	bits	 UMultw(u , 2k)

•••

k

• • • 0 0 0 •••

TMultw(u , 2k)
0 0 0 ••• •••

 CS33 Intro to Computer Systems VIII–12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Unsigned Power-of-2 Divide with Shift
•  Quotient of unsigned by power of 2

– u >> k gives ⎣ u / 2k ⎦

–  uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0 •••
u
2k/

u / 2kdivision:		

operands:	
•••

k
••• •••

••• 0 0 0 ••• •••

⎣ u / 2k ⎦	 ••• result:	

.	

binary	point	

0

0 0 0 ••• 0

 CS33 Intro to Computer Systems VIII–13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Signed Power-of-2 Divide with Shift
•  Quotient of signed by power of 2

– x >> k gives ⎣ x / 2k ⎦

–  uses arithmetic shift
–  rounds wrong direction when x < 0

0 0 1 0 0 0 •••
x
2k/

x / 2kdivision:		

operands:	
•••

k
••• •••

••• 0 ••• •••
RoundDown(x / 2k) ••• result:	

.	

binary	point	

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

 CS33 Intro to Computer Systems VIII–14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide
•  Quotient of negative number by power of 2

– want ⎡ x / 2k ⎤ (round toward 0)
–  compute as ⎣ (x+2k-1)/ 2k ⎦

»  in C: (x + (1<<k)-1) >> k
»  biases dividend toward 0

Case 1: no rounding

divisor:		

dividend:	

0 0 1 0 0 0 •••

u

2k/
 ⎡ u / 2k ⎤

•••

k
1 ••• 0 0 0 •••

1 ••• 0 1 1 ••• .	

binary	point	

1

0 0 0 1 1 1 ••• +2k –1 •••

1 1 1 •••

1 ••• 1 1 1 •••

Biasing	has	no	effect	

 CS33 Intro to Computer Systems VIII–15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide (Cont.)

divisor:		

dividend:	

Case	2:	rounding	

0 0 1 0 0 0 •••

x

2k/
 ⎡ x / 2k ⎤

•••

k
1 ••• •••

1 ••• 0 1 1 ••• .	

binary	point	

1

0 0 0 1 1 1 ••• +2k –1 •••

1 ••• •••

Biasing	adds	1	to	final	result	

•••

incremented	by	1	

incremented	by	1	

 CS33 Intro to Computer Systems VIII–16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Why Should I Use Unsigned?
•  Don’t use just because number nonnegative

–  easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

–  can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
 . . .

•  Do use when performing modular arithmetic
–  multiprecision arithmetic

•  Do use when using bits to represent sets
–  logical right shift, no sign extension

 CS33 Intro to Computer Systems VIII–17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byte-Oriented Memory Organization

•  Programs refer to data by address
–  conceptually, envision it as a very large array of bytes

»  in reality, it’s not, but can think of it that way
–  an address is like an index into that array

»  and, a pointer variable stores an address

•  Note: system provides private address spaces to each
“process”
–  think of a process as a program being executed
–  so, a program can clobber its own data, but not that of others

• • •

 CS33 Intro to Computer Systems VIII–18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Machine Words

•  Any given computer has a “word size”
–  nominal size of integer-valued data

»  and of addresses

–  until recently, most machines used 32 bits (4 bytes)
as word size
»  limits addresses to 4GB (232 bytes)
»  becomes too small for memory-intensive applications

•  leading to emergence of computers with 64-bit word
size

– machines still support multiple data formats
»  fractions or multiples of word size
»  always integral number of bytes

 CS33 Intro to Computer Systems VIII–19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Word-Oriented Memory
Organization

•  Addresses specify byte
locations
–  address of first byte in word
–  addresses of successive words

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

 CS33 Intro to Computer Systems VIII–20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byte Ordering

•  Four-byte integer
–  0x76543210

•  Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103 ?

Big-endian

Little-endian

 CS33 Intro to Computer Systems VIII–21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byte Ordering (2)

00 00 00 01

Big Endian

Little Endian

 CS33 Intro to Computer Systems VIII–22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Quiz 2

int main() {
 long x=1;
 proc(x);

 return 0;
}

void proc(int arg) {
 printf("%d\n", arg);

}

What value is printed
on a big-endian 64-bit
computer?

a)  0
b)   1
c)  232

d)   232-1

