

CSCI0330 Intro Computer Systems Doeppner

 Project Strings + Performance
Due: October 18, 2019 at 11:59pm

1 Overview 1

2 Install the Stencil 1

3 Part 1: Strings 2
3.1 Assignment 2
3.2 Allowed Library Functions and Resources 4
3.3 Testing 4

4 Part 2: Performance 6
4.1 Poly

4.1.1 Assignment 6
4.1.2 Horner’s Method 6

4.2 PolyCol 7
4.2.1 Assignment 7

4.3 Getting Started 8
4.4 Testing 8

5 Handing In 9

1 Overview
This assignment was previously two separate projects — Strings and Performance — that for
logistical reasons were combined into a single project with two parts.

You should approach each of the two parts as its own project, independent of the other part.

In the Strings portion of this project, you will implement a subset of C’s string manipulation
library.

In the Performance portion, you will optimize the performance of two functions using techniques
you learned in class.

2 Install the Stencil
To get started, run the following command in a terminal:

1

CSCI0330 Project Strings + Performance October 18, 2019

cs0330_install stringsperf

This will install the stencil code in your course/cs0330/stringsperf directory.

The only files you should edit are strings/strings.c, perf/poly.c, and perf/polycol.c

3 Part 1: Strings

Professor Doeppner is deep in the ocean, and has just come across a couple of shrimp: the
Twin-Stripe Crinoid Shrimp and the Peacock Tail Anemone Shrimp. Unfortunately, animals have
weird and complicated latin names, and our diver will have to be able to distinguish precisely
between Periclimenes affinis and Periclimenes brevicarpalis if he is to be taken seriously as a
scientist. Help him preserve his good name within the diving community by implementing C’s
string manipulation functions!

String manipulation is an important concept in computer science, and it is something that comes
up very often in systems programming. Most programming languages have a string library that
relieves programmers from writing their own string operations for every program. The C
Standard Library has some excellent string manipulation facilities, but we want to assemble one
ourselves!

3.1 Assignment
For this part of the project, you will implement a subset of C’s standard library string functions.
You will use these functions in the upcoming Shell assignments to tokenize and search strings.

You should implement the following functions, all of which are documented extensively in the
strings.c stencil file. As a hint, you may need to reuse earlier functions in later functions, so it
might help to write these functions in order.

2

http://cs.brown.edu/~twd/twdUnderwater/index.html#/view/ID826828
http://cs.brown.edu/~twd/twdUnderwater/index.html#/view/ID826358

CSCI0330 Project Strings + Performance October 18, 2019

Your implementations should be efficient, but do not optimize your code at the expense of
readability. (You will get a chance to write highly optimized code in Performance!) Please
comment your code and explain any complicated logic. Your implementations should be at least
as fast as the baseline times listed in Section 3.3 for full credit.

Here are the functions you should write, along with example uses of each:

● size_t strlen(const char *s);

strlen computes the length of a string, excluding the terminating null byte.

size_t len = strlen("ALGOT / SKADIS"); // len = 14

● size_t strspn(const char *s, const char *accept);

strspn computes the number of bytes in the largest prefix of s that contains only
characters from accept.

char *s = "Design your own ELVARLI storage systems";

char *accept = "Design your ELVARLI";

size_t span = strspn(s, accept); // span = 13

● size_t strcspn(const char *s, const char *reject);

strcspn computes the number of bytes in the largest prefix of s that contains only
characters not in reject.

char *s = "coming up with example strings gets hard";

char *reject = "breakingthe4thwall";

size_t span = strcspn(s, reject); // span = 3

● int strncmp(const char *s1, const char *s2, size t n);

strncmp is similar to the behavior of strcmp, which you do not have to implement for
this assignment. strcmp compares two strings and returns a number less than, equal to,
or greater than 0, if s1 is found to be lexicographically less than, equal to, or greater than
s2.
strncmp is similar, except that it only compares the first (at most) n bytes of s1 and s2.

int result = strncmp("ABCXYZ", "ABCXYZAAO", 6); // result = 0

● char *strncpy(char *dest, const char *src, size t n);

strncpy is similar to the behavior of strcpy, which you do not have to implement for
this assignment. strcpy copies the contents of src into dest
strncpy is similar, except that it only copies the first (at most) n bytes from src into
dest.

3

CSCI0330 Project Strings + Performance October 18, 2019

char dest[] = "MACKAPAR";

strncpy(dest, "TJUSIG", 3); // dest now becomes "TJUKAPAR"

Hint: Think about why we might have used a char[] instead of a char* for dest.

● char *strstr(const char *haystack, const char *needle);

strstr finds the first occurrence of the string needle in the string haystack.

char *needle = "NYMANE";

char *haystack = "---HOLJES---NYMANE---NYMANE---";

char *location = strstr(haystack, needle);
// location = "NYMANE---NYMANE---"

● char *strtok(char *str, const char *delim);

strtok returns a pointer to the first segment of str that does not contain any characters
in delim. strtok should return non-empty token strings or NULL if there are no more
tokens in str. Note that strtok is stateful; to extract a sequence of tokens from the
same string, you must make multiple calls by specifying the corpus string in the first call
and NULL each time after.
Hint: strtok makes no promise to leave str untouched. You may overwrite characters
with null terminators if you’d like.
Hint: It may be helpful to think of delim as a set of characters that happens to be stored
as a list, rather than as a string itself.
Hint: The static keyword may be useful when writing strtok.

char *delim = "-";

// string is a char * that equals "---I---Love---33---"

char *token1 = strtok(string, delim); // token1 = "I"
char *token2 = strtok(NULL, delim); // token2 = "Love"

Remember that in C, you can think of the type char * as any of three things: a pointer to a
character, a string, or an array of characters. These are all the same! Because of this, you can
index into a string like an array.

3.2 Allowed Library Functions and Resources

Read the man pages for more information about each of the string functions if you’re confused
by the explanation, or come to hours and discuss the functions in more detail. All functions that
you’ll need to use are defined in strings.c. There are no external functions allowed.

4

CSCI0330 Project Strings + Performance October 18, 2019

3.3 Testing
We have included a few tests in the main function of the tests.c file. These tests will test the
expected functionality of this string library. While they do cover basic functionality, we
encourage you to write more of your own tests so that you can be sure that your functions work
correctly before using them to implement subsequent functions.

Please do not modify the tests that are already in the file, as this will only make it harder for you
to confirm that everything is working. Also, we will test your code with no compiler optimizations,
so do not use a compiler flag to improve your times.

To build the test executable, run:

make

To test your work against the entire test suite, run:

./run_tests [number of repetitions] all

To test your work against a specific test or list of tests, run:

./run_tests [number of repetitions] <test name(s)>

We will be testing your code’s efficiency with one million repetitions. If you do not specify a
number when running the tests, it will default to one million.

Here are some reference times you should shoot for. Each time is in milliseconds.

 Baseline Optimized System

strlen 824ms 199ms 86ms

strspn 2s 339ms 124ms 93ms

strcspn 2s 365ms 141ms 99ms

strncmp 1s 956ms 199ms 177ms

strncpy 490ms 302ms 287ms

strstr 487ms 149ms 32ms

strtok 371ms 224ms 177ms

5

CSCI0330 Project Strings + Performance October 18, 2019

For full credit, we are looking for times that run faster than the baseline. If you want a challenge,
see if you can reach the optimized times! The system column shows the times of the actual
system functions.

4 Part 2: Performance

4.1 Poly

The number of sharks in the beach at any given time is dependent on a variety of factors,
including water temperature, depth, and number of swimmers. In order to plan the optimal
beach day, it’s important to take these circumstances into account, so Professor Doeppner
developed a formula to calculate the number of sharks chillin’ at the beach at any moment.
However, Tom neglected to include compiler optimizations, causing surfers to forgo the lengthy
calculations and just hit the waves. Help speed up Tom’s program and save the surfers from the
sharks!

6

CSCI0330 Project Strings + Performance October 18, 2019

4.1.1 Assignment
The purpose of this assignment is to utilize various techniques to optimize the speed of C code.
In particular, you will be optimizing the performance of a function, poly, and explaining the
techniques that you used.

The poly function evaluates a polynomial whose coefficients are given by a, i.e.

a[0] + a[1]x + a[2]x2 + a[3]x3 + … + a[n]xn

where n is the degree of the polynomial. A baseline implementation of poly is provided for you
and replicated below. Your task is to identify and implement ways to improve this function’s
performance:

double poly(double a[], double x, int degree) {

long i;
double result = a[0];
double xpwr = x;
for (i=1; i<=degree; i++) {

result += a[i] * xpwr;
xpwr = x * xpwr;

}
return result;

}

Please note that to implement a performant poly function, you may need to restrict the range of
values you can pass in for variable degree. You do not have to worry about the result
overflowing for extremely large values for degree, but you must at a minimum support degrees
greater than or equal to 15 (you don’t need to worry about the result overflowing when the
number of degrees is sufficiently high).

4.1.2 Horner’s Method
Horner’s Method is an algorithm for polynomial evaluation that reduces the number of
operations performed. Given a polynomial

p(x) = ∑ni=0 aix
i

Horner’s Method factors the polynomial into the new expression

p(x) = a0 + x(a1 + x(a2 + … + x(an - 1 + anx)...))

7

CSCI0330 Project Strings + Performance October 18, 2019

Intuitively, this solution halves the number of multiplications necessary for solving a polynomial.
Take the following polynomial for example:

p(x) = x + 3x2 + 2x3

To apply Horner’s Method to this polynomial, we would rearrange p(x) as follows:

p(x) = 0 + x(1 + x(3 + 2x))

This technique should serve as a starting point for your improved poly implementation.

4.2 PolyCol
After implementing the appropriate optimizations, Tom’s Shark CalculatorTM gained immense
popularity among the surfin’ community, and the people want more! To satisfy demand, Tom
has cleverly expanded his program to calculate the shark density at a number of beaches at the
same time. However, our hero still remains woefully ignorant of compiler optimizations, and his
program has been a commercial failure due to its slowness, bringing hard times upon his
company and his family. Help save Tom’s business by optimizing his program!

4.2.1 Assignment
In this part of the performance assignment, you are responsible for optimizing the performance
of polycol. This is a similar problem to poly, except that you must simultaneously compute
multiple polynomials, the coefficients of each making up a column in an n x n matrix. For
example, given polynomials

pa(x) = a[0] + a[1]x + a[2]x2 + a[3]x3 + … + a[n]xn
pb(x) = b[0] + b[1]x + b[2]x2 + b[3]x3 + … + b[n]xn
pc(x) = c[0] + c[1]x + c[2]x2 + c[3]x3 + … + c[n]xn

…

The given and resulting matrices would look like this:

 (x)pa (x)pb (x)pc (x)pd (x)pe (x)pf

8

CSCI0330 Project Strings + Performance October 18, 2019

j=0 a[0] b[0] c[0] d[0] e[0] f[0]

j=1 a[1] b[1] c[1] d[1] e[1] f[1]

j=2 a[2] b[2] c[2] d[2] e[2] f[2]

j=3 a[3] b[3] c[3] d[3] e[3] f[3]

j=4 a[4] b[4] c[4] d[4] e[4] f[4]

j=5 a[5] b[5] c[5] d[5] e[5] f[5]

 res[0] res[1] res[2] res[3] res[4] res[5]

Where res[0] = a[0] + a[1]x + a[2]x2 + a[3]x3 + a[4]x4 + a[5]x5 for a given value of x.

In other words, each element [j][i] of the matrix is the jth coefficient of polynomial i. Your
res matrix, then, should be a 1 x i matrix with the computed polynomials in their respective
columns.

Please note that the values of x in this computation are x = i / N, where i is the current column
and N is the total number of columns. We are using these values of x instead of the standard
x=0,1,2,...n to prevent overflow.

The naive approach of this computation, provided in the stencil and replicated below, goes
through the columns one at a time and evaluates the contents to find the final 1 x n matrix.

void polycol(int n, double *res, double mat[n][n]) {
 memset(res, '\0', sizeof(double) * n);

i

for(int i = 0; i < n; i++) {

res[i] = mat[0][i];

// `i` must be cast to a double or the result will be rounded to

0

double x = ((double) i / n);

double xpwr = x;

for(int j = 1; j < n; j++) {

res[i] += mat[j][i] * xpwr;

xpwr *= x;

}

}

}

9

CSCI0330 Project Strings + Performance October 18, 2019

This solution, however, does not take advantage of any of the optimizations we learned in class,
and is therefore pretty slow. All the surfers will be eaten alive if you don’t figure out how to make
this run faster!

Hint: You can assume there are an even number of rows and columns in mat (i.e. that the
polynomials calculated are of an odd order).

4.3 Getting Started
Before tackling this problem, try to consider what makes this computation so slow. This will help
you determine how to improve efficiency. Although poly and polycol are separate projects that
will be graded separately, we strongly recommend fully completing poly before beginning
polycol.

4.4 Testing
There are several files in the performance/poly directory, but you only need to worry about filling
in poly.c. Similarly, the only file in performance/polycol that you need to fill in is polycol.c.
Each file contains the naive implementations of the respective codes. After building your code,
you can run

./poly or ./polycol

To test the respective codes. Running this code will print the following:
● Reference Real time and Reference CPU time, which represent your target values.

You should try to get your performance time to be as close to the reference as possible
● Your Real time and Your CPU time. These values tell you the efficiency of your own

code.
● Either “Your result is correct!” or “Results differ”. Please note that you

cannot get any points for performance if your result is not correct.
● Either “Your implementation was ___ % slower than the reference” or “Your

implementation was ___% faster than the reference! Congratulations!!!”

You will be graded on this project based on the following categories.

● Functionality
○ Your code should correctly compute the poly and polycol functions’ output. A

correct output is necessary to receive performance points!
○ Note: you don’t have to perform error-checking on the arguments passed to poly

and polycol: this is done for you by the support code.
● Performance

10

CSCI0330 Project Strings + Performance October 18, 2019

○ poly and polycol run quickly. The faster your program runs, the more points
you will receive. Your code should aim to be as fast as the reference code.

○ To get full performance points your code should be no more than 10% slower
than the reference solution for both poly and polycol.

○ You will not receive any performance points if your code does not produce
correct output.

● Explanation
○ You should explain all optimizations that you made in poly and polycol in your

README. This will be a significant portion of your grade, so make sure to explain
what optimizations you made and why they make your program faster. If you
considered any alternatives, explain why you chose to implement your function
the way you did and what tradeoffs you may have made.

5 Grading
See the table below for guaranteed grade cutoffs. If you do not meet the threshold for a given
letter grade, you may still receive that grade after Professor Doeppner applies a curve (you will
only ever be curved up).

Because this is a two part project, we are splitting grade guarantees in the parts. If you reach a
different guarantee requirement in each section, you are guaranteed the lower of the two. This
does not prevent you from reaching a higher grade, depending on the distribution - You are
simply guaranteed to reach the lower of the two. For example, if you reach an A on Strings, but
a B on Performance, you will receive AT LEAST a B on the assignment.

Grade Strings Performance

A Full functionality, no segfaults, and
performance faster than our
baseline. Explanation of strstr and
strtok in README.

Multiple large optimizations & runtimes within
10% of reference for both poly and polycol,
with full explanations. "./poly" and
"./polycol" should return "Your result is
correct!"

B

Full functionality on all but one, no
segfaults on those with full
functionality, and performance
under our baseline. Explanation of
strstr and strtok in README (unless
one of those is the one missed).

More than one large optimization on at least
one problem, and runtimes within 50% of
reference for both poly and polycol. "./poly"
and "./polycol" should return "Your result
is correct!"

C Full functionality on all but two, no
segfaults on those with full
functionality (except on strtok), and

At least one large optimization and runtimes
within 150% of reference for both poly and
polycol. "./poly" and "./polycol" should

11

CSCI0330 Project Strings + Performance October 18, 2019

performance under our baseline. return "Your result is correct!"

D You can get your project checked off for a C up until the next project deadline

For these cutoffs to apply, you must meet the requirements of our style guide 😜

6 Handing In
To hand in your project, run the command:

cs0330_handin stringsperf

from your stringsperf directory.

Your handin must be contain two directories — strings and perf — that separate your work
for the two parts of this project. The directories should be organized as follows:

● strings directory

○ All .c and .h files containing code you have written for the Strings portion of this
assignment.

○ A README explaining your approaches to strstr and strtok. You should also
document any known bugs and collaborators.

● perf directory

○ All .c and .h files containing code you have written for the Performance portion
of this assignment.

○ A README explaining your optimizations, as described in the Performance
section of the handout. You should also document any known bugs and
collaborators.

Ensure that your code is properly formatted before handin.
Consult the C Style document (which is on the website) for some pointers on C coding style.
Note that you can run a style formatting script in order to make your code match some of the
style specifications. To use the script, run the command

cs0330_reformat <file1> <file2> …

Check the style guide for more information.

Note: the reformat script should only be used on .c and .h files

12

http://cs.brown.edu/courses/cs033/docs/guides/style.pdf

CSCI0330 Project Strings + Performance October 18, 2019

If you wish to change your handin, you can do so by re-running the handin script. Only the most
recent handin will be graded.

Important note: If you have already handed in your assignment, but plan to hand in again after
the TAs start grading at noon on Tuesday, October 23rd, in addition to running the regular
handin script (cs0330_handin stringsperf), you must run cs0330_grade_me_late
stringsperf to inform us not to start grading you yet. You must run the script by noon on
10/19(earlier than usual because it’s due friday). If you run this script, you will get grades
back later than other students.

If you do not run this script, the TAs will proceed to grade whatever you have already handed in,
and you will receive a grade report with the rest of the class that is based on the code you
handed in before we started grading.

If something changes, you can run the script with the --undo flag (before noon on 10/19) to tell
us to grade you on-time and with the --info flag to check if you’re currently on the list for late
grading.

These instructions apply to all projects unless otherwise stated on the handout.

13

