

CSCI0330 Intro Computer Systems Doeppner

 Maze
Due: Wednesday, September 18, 2019 at 11:59pm

1 Introduction 2

2 Assignment 2

3 Stencil 2

4 Maze Structure 3

5 Generator 4
5.1 Algorithm 5
5.2 Random Number Generation 5

6 Maze Encoding, Decoding, and Translating 6
6.1 Encoding 6
6.2 Decoding 7
6.3 Translating Between Representations 7

7 Solver 8
7.1 Algorithm 8
7.2 Solver Output 8

8 Input and Output 10
8.1 Opening a File 10
8.2 Writing to a File 10
8.3 Closing a File 11

9 Error Checking 11

10 Compiling and Running 11
10.1 Compiling 11
10.2 Running 12
10.3 Support 13

11 Grading 13

12 Handing In 15

CSCI0330 Intro Computer Systems Doeppner

Note: Please make sure you read the handout all the way through before getting started or
going to hours!

0 Web Handout
This year we have introduced a web-native handout for each of our assignments. Regardless of
whether you are using those or the pdf, we would really appreciate your feedback!

1 Introduction
Oh jeepers! While Tom was scoping the deep waters s-Pacifically for colorful octopuses to
photograph for his underwater photo collection, he encountered a ghastly C-monster! In order to
escape, Tom must create a maze of kelp to stump the C-monster and swim away to safety.
Complete this assignment and help Tom flee the C-monster. Shrimply put, his life is in your
hands!

2 Assignment
This C programming assignment contains two parts: first you will write a program generator,
which generates mazes; then you will write a program solver, which solves those mazes.

To get started, run:

 cs0330_install maze

This will copy the stencil for this project into ∼/course/cs0330/maze.

Note: You might find it useful to run and test bits of code in an online C compiler. This is a super
helpful to make sure each part of your code does what you think it’s doing. Use it!

3 Stencil
You do not need to modify generator.h or solver.h. You will need to modify generator.c,
solver.c, common.c, and common.h. We recommend implementing the functions (and structs)
in the following order:

Start with common.h:

http://cs.brown.edu/courses/csci0330/maze/
https://docs.google.com/forms/d/e/1FAIpQLSc9mJ1-9vQlYcDRtWemTYht-oHAUOpuyHXYmcUYcMlrEVH13g/viewform
https://www.grammarly.com/blog/octopi-octopuses/
https://repl.it/languages/c

CSCI0330 Intro Computer Systems Doeppner

1. maze_room struct

Next in common.c:
2. initialize_maze function
3. is_in_range function
4. get_neighbor function

Then in generator.c:
5. get_opposite_dir function
6. shuffle_array function
7. drunken_walk function
8. encode_room function
9. encode_maze function
10. main function

Finally in solver.c:
11. create_room_connections function
12. decode_maze function

13. dfs function
14. print_pruned_path function
15. main function

NOTE: This order is simply a recommendation. Feel free to implement these functions in
whatever order you find most intuitive!

4 Maze Structure
In the Life lab, you learned how to index into a one-dimensional array to represent a
two-dimensional array. In this project, however, we will be representing mazes as actual
two-dimensional arrays.

Room indices start as (0,0) at the top left corner, and grow as you move down and to the right.
This means the lower-right corner of a 10 × 25 maze would have coordinates (9,24).

Each room will have either a wall (stored as a 1) or an opening (stored as a 0) for each possible
direction (North, South, West, East). Connections should be consistent between rooms, and
rooms on the edges should always have a wall in that direction (or two walls, in the case of
corners).

CSCI0330 Intro Computer Systems Doeppner

You must use a 2D array to represent your maze. The stencil declares maze arrays as

struct maze_room maze[num_rows][num_cols]

This shows up in the signature of each function, so be sure to build your maze array in the same
way. Always make sure the first index is the row, and the second index is the column.

For each room, you will need to keep track of the following:

● the row and column of the room.
● whether or not the room has been visited.
● for each connection of the room, whether that connection is a wall, opening, or is

uninitialized.

Make sure you initialize all values.

NOTE: You may notice there is already a maze_room *next field in the maze struct. This will
only become relevant when you are implementing your solver, so don’t pay attention to it
for now.

5 Generator
The first part of this project will be to generate a maze.

CSCI0330 Intro Computer Systems Doeppner

5.1 Algorithm
There are a few ways to generate a maze, but the simplest uses the recursive drunken-walk
algorithm. This algorithm chooses a random order in which to visit each room of the maze, and
then creates walls based on that order.

This algorithm will guarantee there is a path from any room to any other room. The reason for this
is because any room it encounters which it hasn’t visited will be given a connection to the
previous room. No room will ever be “blocked off” from the chain of visited rooms, so all rooms will
be accessible from each other.

Pseudocode:

drunken_walk(row, col):

 r = rooms[row][col]

 set r.visited to true

 for each direction dir in random order:

 if (row + row_offset of dir, col + col_offset of dir) is out of bounds:

 store a wall in r at direction dir

 else:

 neighbor = rooms[row + row_offset of dir][col + col_offset of dir]

 if neighbor has not yet been visited:

 store an opening in r at direction dir

 drunken_walk(neighbor.row, neighbor.col)

 else:

 opposite_dir = the opposite direction of dir

 if neighbor has an initialized value in direction opposite_dir:

 store that value in r at direction dir

 else:

 store a wall in r at direction dir

5.2 Random Number Generation
To ensure that the maze generated by your program is different every time, you’ll need to use C’s
rand() function, which takes no arguments and returns an integer between 0 and RAND_MAX. To
get a random number between 0 and n-1, you can take rand() % (n).

The rand() function is actually a pseudorandom number generator, meaning that it outputs a
consistent sequence of values when given a particular seed value. By default, rand() has a seed
value of 1, so unless you change this, your program will generate the same sequence of
random numbers each time it is run.

CSCI0330 Intro Computer Systems Doeppner

To change the seed value, include the line srand(time(NULL)) at the beginning of your main()
function.

To randomize the order of directions through which you will search, declare the directions in some
fixed order in an array. Then the following algorithm can be used to shuffle that array in-place:

 shuffle_array(A[n]):

 for i from 0 to n-1:

 choose a random number r between i and n-1, inclusive

 switch A[i] and A[r]

This procedure produces all possible orderings with equal probability.

6 Maze Encoding, Decoding, and Translating

6.1 Encoding
In order for you to save the mazes you generate you need some way to represent them in a file.
(Your generator will be writing to this file, and your solver will be reading from it). Since each
room has four connections, each of which can be in one of two states (wall or opening), there are
24 = 16 possible configurations a room can be in. Therefore, you will be using a number from 0 to
15 to represent each possible room connection configuration. We will call this number the room
encoding.

We can use one bit to represent each connection (total of four), so we’ll be using the four
lowest-order bits of an int. (Note that an int is made up of 32 bits. We are only using 4 out of the
32 bits in the int, and will be ignoring the 28 highest-order bits.)

Each of these four bits will represent a connection. Specifically,

● the highest-order bit represents the east connection
● the next-highest bit represents the west connection
● the next-lowest bit represents the south connection
● the lowest-order bit represents the north connection

As an example, a room with walls to the east, west, and north, and an opening to the south would
be represented as 1101 in binary, which is equal to 13 in decimal, so 13 would be its room
encoding.

NOTE: Your maze MUST conform to this specification.

CSCI0330 Intro Computer Systems Doeppner

6.2 Decoding
Given a room encoding as an int, you will need to be able to extract the connections. This can
be done using bit-level operations. The most relevant operator will be the bitwise AND (&), which
compares each bit of the two operands. If both bits are 1, then the corresponding resultant bit is
set to 1. Otherwise, it is set to 0. Some examples are:

 1011 (11) 1011 (11)

 & 0010 (2) & 0100 (4)
 0010 (2) 0000 (0)

 In C: 11 & 2 = 2 11 & 4 = 0

We can use the & operator to extract the value of a particular bit from a room encoding by using a
bit mask, or an integer whose binary representation consists entirely of zeros except for a
particular bit (or bits). Some examples include 4 (0100) and 1 (0001).

To check whether the ith bit of a value is set (zero-indexing), you can just & it with 2i.
(e.g. if (x & 4) {printf(“third bit is set”)}).

6.3 Translating Between Representations
Your generator will be writing the encoded maze to a file, and your solver will be reading it. We
have chosen to write each room encoding in hexadecimal, since the numbers 0 through 15 are all
one character long in hex. Here is an example of what an encoded maze will look like:

597333331395397313333313b

c6339595adccd639633b59639

cd53286a70ac619c5333a639c

c4a59e5396969cc6ad51b53ac

ce5a632bc5a5ac61b4ac5a738

432339ddcc5a5adc5ad6a5958

cd5396accccdc58cc5239c6ac

cccd633accc4aec6a639cc59c

68c43339cccc5949719cc6acc

7a6a7332a6a6a6a63a6a633ae

We have provided for you the functions responsible for reading and writing the encoded maze to
and from a file (write_encoded_maze_to_file and read_encoded_maze_from_file
respectively). You are responsible for correctly encoding the maze before calling
write_encoded_maze_to_file, and correctly decoding the encoded maze returned by
read_encoded_maze_from_file.

https://fresh2refresh.com/c-programming/c-operators-expressions/c-bit-wise-operators/
https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

CSCI0330 Intro Computer Systems Doeppner

To debug, we encourage you to try out very small mazes first, and try using the encoded
maze to draw it by hand!

NOTE: We encourage you to read over each of these functions we provided to see how we
are reading and writing from the files!

7 Solver
The second part of this project is to write a solver that will solve the mazes the you (or we)
generate. Please make sure your generator works before starting on this section. (see Support
section)

7.1 Algorithm
Your program should employ a depth-first search. Such a search begins at the maze’s start room
and explores adjacent, accessible rooms recursively.

Beginning with the indicated room, this algorithm repeatedly chooses a path from each room and
follows that path until it reaches a dead end, at which point it backtracks and tries a new path.
This process continues until all paths have been explored or the destination is found. The
following is pseudocode for this algorithm.

dfs(row, col):

 if (row, col) are the coordinates of the goal

 return true

 mark the room at [row][col] as visited

 for each direction dir:

 neighbor = rooms[row + row_offset of dir][col + col_offset of dir]

 if the connection in direction dir is open and neighbor is unvisited:

 if dfs(neighbor.row, neighbor.col) is true

 return true

 /* if the program reaches this point then each neighbor’s branch

 has been explored, and none have found the goal. */

 return false

7.2 Solver Output

Your program should print a list of rooms to the given output file. The room coordinates should be
formatted in <row>, <col> format when printed to the solution file.

CSCI0330 Intro Computer Systems Doeppner

To write to a file, use fprintf:

fprintf(FILE *file, char *content)

In the fprintf function, “file” is a pointer to the file where we want to write, and “content” is the string
(char pointer) that we want to write.

Here’s an example of what the first several rows of your solution file might look like.

PRUNED

0, 0

1, 0

1, 1

1, 2

2, 2

…

We expect your solver to produce two different modes of output:

● Pruned Mode: Your program outputs the coordinates of only the final route from
beginning to end. Your program should first print the line “PRUNED”. The program should
then print the coordinates of each room on the solution path as described earlier.

To do this, build a list of rooms as you search, and print out each room in the list when you
reach the destination room. You can accomplish this using pointers! Use the provided
next pointers in your room structs to maintain a linked list of rooms - when you move from
room A to room B, set room A’s pointer to room B.

● Full Mode: Your program outputs the entire path traversed up until the goal is reached.

Your program should first print the line “FULL”. The program should then print each
room’s coordinates when first visiting that room, and after each recursive call that returns
false. This will print the path from start to finish, including “backtracking” after dead ends.

Note: Depending on how your solver algorithm searches the maze, there can be multiple valid
FULL solutions.

The choice should be made when your program is compiled. This is done using preprocessor
macros. Macros are defined using the gcc compiler flag -D<macro>, which defines <macro> for
the preprocessor. For example, to add the macro PIZZA to your program, add the flag -DPIZZA. In
your Makefile, you’ll see the flag -DFULL in the command for the solver_full target, which
defines the macro FULL for that target.

To write code that will execute only when a specific macro is defined, refer to the example below:

CSCI0330 Intro Computer Systems Doeppner

#ifdef FULL

printf(<something>);

#else

printf(<something else>);

#endif

The above code fragment executes the printf(<something>) statement only if the macro FULL
is defined, and executes the printf(<something else>) statement otherwise. You can also use
the macro #ifndef <macro> to execute code only if <macro> is not defined.

Your program should print the entire search if a macro FULL is defined and print only the path to
the exit otherwise. Rooms should be printed with format <row>, <col> on its own line with no
parentheses with the upper-left corner of the maze corresponding to coordinate (0, 0). If the
start and end rooms happen to be the same, your output should contain the room only once.

8 Input and Output
In this assignment, you will need to work with files to represent and solve your mazes. The C
<stdio.h> library contains several definitions that enable you to easily write to or read from files.
Included in these definitions is a FILE struct, which represents a file within a C program.

8.1 Opening a File
To use files (reading, writing, etc), you need to first open it. The fopen() function opens a file,
returning a pointer to a FILE struct that corresponds to the desired file.

FILE *fopen(char *filename, char *mode)

The desired file is indicated by filename. The mode argument refers to how the file will be used; if
you intend to write to the file, this value should be "w", and if you intend to read from the file, it
should be "r".
If the desired file does not exist it will be created. If an error occurs, NULL is returned.

8.2 Writing to a File
In fact, you can write data to any file (not just standard error) using the fprintf() function. This
function works in very much the same way as printf().

int fprintf(FILE *stream, char *format, ...)

The only difference is that fprintf() takes an additional argument: the FILE * that you obtained
with fopen().

CSCI0330 Intro Computer Systems Doeppner

8.3 Closing a File
After your program has finished writing to or reading from a file, it should close that file. Do this
with the function fclose().

int fclose(FILE *fp)

This function returns 0 if no error occurred and EOF (a negative value) otherwise.

9 Error Checking
Throughout your code you will be using library calls, like fopen, fprintf, and fclose. These
functions may fail, and may return an error. You are expected to check for errors every time
you make a library call. When a library call returns an error, use fprintf to write an error
message to stderr, and then stop program execution by executing return 1 from main().

if (fclose(f)) {
fprintf(stderr, "[Error message goes here.]\n");

return 1;

}

Most functions will return a certain value to denote an error. Find out what those values are with
man <function>, or looking it up in official online documentation. Your main() function should
return 0 if it completed execution normally, or 1 if it exited on encountering an error.

Note: If you are calling fprintf to write to stderr, you do not need to error check it.

10 Compiling and Running

10.1 Compiling
You have been provided a Makefile, a text file that contains scripts for compiling, running, or
cleaning up projects (for example). In order to test the first half of the assignment, you will only
need generator and clean.

The make command only builds files that have been modified since the last build and allows you
to split up your build process (e.g. splitting up generator and solver binaries to be built).

Command Function

CSCI0330 Intro Computer Systems Doeppner

make <target> Builds a particular target. If no target is
specified, it will build the first target (in this
case, the target all).

make clean Removes any previously built targets

make generator Builds your generator program

make solver Builds your solver program with no macros
defined (i.e. the program should print pruned
output)

make solver_full Builds your solver program with the FULL
macro defined (i.e. the program should print
its full exploration path).

make all (or just make) Builds EVERYTHING (your generator,
solver, and solver_full programs)

make clean all Shorthand for running make clean followed
by make all

10.2 Running

Once you have compiled the generator portion of the project, you can run it with the following
commands:

Command Arguments

./generator <output maze file> <rows> <cols>

./solver <input maze file> <rows> <cols> <output solution file>

<starting row> <starting col> <ending row> <ending col>

./solver_full <input maze file> <rows> <cols> <output solution file>

<starting row> <starting col> <ending row> <ending col>

Note: Mazes that are very large may cuase segmentation faults, so we will not test your code with
a maze of a size larger than 250 x 250.

CSCI0330 Intro Computer Systems Doeppner

10.3 Support

Command Function

cs0330_maze_generator_demo Demonstrates the expected behavior of your
generator program.

cs0330_maze_solver_demo Demonstrates the expected behavior of your
solver program.

cs0330_maze_solver_full_demo Demonstrates the expected behavior of your
solver_full program.

cs0330_maze_validator This program will check your maze for errors,
such as inconsistent or missing walls and
inaccessible areas. Please make sure to
validate your generated maze before moving on.

11 Grading

Your grade for this project will be calculated as follows:

Generator
Solver

Error Handling
Style

40%
40%
10%
10%

Total 100%

Both generator and solver will be graded based on Code Correctness (15 pts) and Functionality
(25 pts).

● Code Correctness: no part of your code relies on undefined behavior, uninitialized
values, or out-of-scope memory; your program compiles without errors or warnings.
Only cs0330_maze_validator will be used during grading. (i.e It’s ok if your maze doesn’t
work in the visualizer.)

● Functionality: your code produces correct output, and does not crash for any reason. It
does not terminate due to a segmentation fault or floating point exception.

CSCI0330 Intro Computer Systems Doeppner

● Error Handling: your code performs error checking on its function inputs and outputs, and
exits gracefully in all situations. No input to your generator or solver should cause a
segmentation fault.

● Style: your code should look nice! Use appropriate whitespace and indentation and
well-named variables and functions. Your code should be reasonably factored, and
functions should not be too long. Make sure your functions have header comments, and if
they already do then don't delete them!

Your programs should perform error checking on their input, with one exception: if your solver
program successfully opens a maze file, you may assume that the file contents form a
correctly-formatted maze. Your program should not crash for any reason; before you hand in your
project, make sure that your program does not terminate due to a segmentation fault or floating
point exception.

Consult the Style Guide for some pointers on C coding style. Note that you can run a style
formatting script in order to make your code match some of the style specifications. To use the
script, run the command

cs0330_reformat <file1> <file2> …

To reformat all .c and .h files in your current directory, you may run:

cs0330_reformat *.c *.h

Check the style guide for more information.

Note: the reformat script should only be used on .c and .h files

See the table below for guaranteed grade cutoffs. If you do not meet the threshold for a given
letter grade, you may still receive that grade after Professor Doeppner applies a curve (you will
only ever be curved up).

Grade Requirements

A Consistently generate valid mazes AND correct solutions (both FULL and
PRUNED), and does not segfault under most circumstances.

B Consistently generate valid mazes AND correct solutions (at least one of FULL or
PRUNED is correct), and does not segfault under most circumstances.

C Consistently generate valid mazes OR correct solutions (at least one of FULL or
PRUNED is correct), and may often segfault.

Failing You can get your project checked off for a C up until the next project deadline

http://cs.brown.edu/courses/cs033/docs/guides/style.pdf

CSCI0330 Intro Computer Systems Doeppner

12 Handing In

To hand in your project, run the command

cs0330_handin maze

from your project working directory. You should hand in ALL FILES (common.c, common.h,
generator.c, generator.h, solver.c, solver.h, along with any support code you may have
written), a Makefile, and a README. Your README should describe the organization of your
programs and any unresolved bugs.

If you wish to change your handin, you can do so by re-running the script. Only your most recent
handin will be graded.

Important note: In order to get grades back to the class in a timely manner, we will have to start
grading before the final deadline to submit an assignment for any credit has passed (6 days after
the on-time deadline). Since students may hand in multiple times, and we always grade the most
recent handin, we need a way of knowing not to start grading students who are planning to hand
in again later.

If you have already handed in your assignment, but plan to hand in again after the TAs start
grading at noon on Saturday, September 21st, you must run cs0330_grade_me_late maze to
inform us. You must run the script by noon on 9/21. If you run this script, you will get grades
back later than other students.

If you do not run this script, the TAs will proceed to grade whatever you have already handed in,
and you will receive a grade report with the rest of the class that is based on the code you handed
in before we started grading. It would be unfair to ask your UTAs to re-grade your new code after
they’ve already put time and effort into grading your original handin.

Exercise caution when running this script: by running it, you forfeit the privilege of on-time
feedback. If something changes, you can run the script with the --undo flag (before noon on 9/21)
to tell us to grade you on-time and with the --info flag to check if you’re currently on the list for
late grading.

These instructions apply to all projects unless otherwise stated on the handout; the deadline to
run the script will be noon on the Saturday after each assignment is due.

