

CSCI0330 Intro Computer Systems Doeppner

Malloc
Due: Monday, November 25th, 2019 at 11:59pm

1 Introduction 1

2 Before getting started... 2

3 Assignment 2
3.1 Specification 2
3.2 Support Routines 5

4 The Trace-driven Driver Program (mdriver) 6

5 Using the REPL 7

6 Programming Rules 9

7 GDB 9
7.1 Useful Commands 9

8 Hints 10

9 Getting Started 11

10 Working from Home 12

11 Grading 12

12 Handing In 13

1 Introduction
With rising water temperatures due to global
warming, the Great Barrier Reef has
experienced high rates of coral bleaching.
Thankfully, Tom has grown a large group of
coral transplants to help repopulate the
damaged sections. However, the coral growths
are all different sizes and there are a limited
number of them. In order to efficiently
repopulate the reef, each section must be
assigned an ideally sized coral growth. That is,

1

CSCI0330 Intro Computer Systems Doeppner

we don’t want to put a small coral growth on a severely damaged section or a large coral growth
on a mildly damaged section. Your task is to devise a system to help Tom allocate appropriately
sized coral growths to each section of the reef.

2 Before getting started...
● Make sure you are familiar with the new rules and expectations for Piazza and TA hours!
● If you have any feedback for the assignment (or the course in general), please use this

anonymous form.
● Malloc is the last project you can use late days on, unless you have SEAs

accommodations or extensions from the professor.
● The main challenge for this project is conceptually understanding how memory allocation

management works. Take advantage of our conceptual hours! For many of you, your
bugs will come from programming mistakes. Knowing exactly how you should be
manipulating blocks of memory in different functions will significantly help you reduce
your bugs AND catch your bugs.

3 Assignment
In this project you will be writing a dynamic storage allocator for C programs, i.e., your own
version of the malloc(), free() and realloc() routines. You are tasked with implementing a
first-fit explicit-free-list dynamic memory allocator. You must also write a heap-checking function
mm_check_heap() that will allow you to print out the state of your heap. This function will be
very helpful in debugging your project.

A first-fit explicit-free-list dynamic memory allocator maintains free blocks of memory in an
explicit free list. explicit means that each element in the list stores a next and previous pointer
to the respective blocks. When memory is allocated, the first block in the free list of sufficient
size is returned. Consult the lecture slides for more detailed information.

Begin by running cs0330_install malloc to set up your home directory for this project. While
you are provided with several files, the only file you will be modifying and handing in is mm.c. 1

You can use the mdriver.c program to evaluate the performance of your solution. Use the
command make to generate the driver code and run it with the command ./mdriver -V. We’ve
also provided you with a REPL to allow you to test your implementation as you go.

1 While there is nothing stopping you from modifying the other files, it is recommended that you elect not to do so, since these files provide you

with feedback about your code which will later be used to provide you with a grade.

2

https://piazza.com/class/jzrmd5hspkj3fx?cid=3162
https://piazza.com/class/jzrmd5hspkj3fx?cid=3263
https://forms.gle/k3xhFEHTHXqHSFh36

CSCI0330 Intro Computer Systems Doeppner

3.1 Specification
Your heap must be initialized with prologue and epilogue blocks, which you can store as global
variables. These will act as ’dummy’ blocks to help eliminate edge cases like coalescing beyond
the bounds of the heap and iterating over your heap. Since these should not be included in your
free list, they do not need previous and next pointers, but remember to move the epilogue when
extending the heap. Think about the special cases you would encounter when dealing with
blocks at the ends of your heap, and how prologue and epilogue blocks could help you eliminate
these cases.

Your dynamic memory allocator will consist of the following five functions, which are declared in
mm.h and have skeleton definitions (which you will be completing) in mm.c.

- int mm_init(void);

- void *mm_malloc(size_t size);

- void mm_free(void *ptr);

- void *mm_realloc(void *ptr, size_t size);

- int mm_check_heap(void);

● mm_init(): mdriver calls mm_init() to perform any necessary initializations, such as

allocating the prologue and epilogue blocks and the initial heap area. The return value
should be -1 if there was a problem in performing the initialization, otherwise the return
value should be 0. Make sure to initialize flist_first in mm_init(), otherwise there
are strange errors when running multiple traces.

● mm_malloc(): The mm_malloc() routine returns a pointer to an allocated block’s

payload of at least size bytes. The entire block, which should also include the header
and footer, which are each 8 bytes long, should lie within the heap region and should not
overlap with any other block.

3

CSCI0330 Intro Computer Systems Doeppner

We will be comparing your implementation to the version of malloc() supplied in the
standard C library (libc). Since the libc malloc always returns payload pointers that
are aligned to 8 bytes, your malloc implementation should likewise always return 8-byte
aligned pointers. You can use the align function at the top of mm.c to ensure this. Since
you are implementing a first-fit allocator, your strategy for doing this should be to search
through the free list for the first block of sufficient size, returning that block if it exists. If it
does not exist, ask for more memory from the memory system using mem_sbrk (see the
Support Routines section below) and return that instead. If a block of size zero is
requested, NULL should be returned.

● mm_free(): The mm_free() routine frees the block pointed to by ptr. It returns nothing.

This routine is only guaranteed to work when the passed pointer (ptr) was returned by
an earlier call to mm_malloc() or mm_realloc() and has not yet been freed. If NULL is
passed, this function should do nothing. mm_free() should never be called on the
prologue and epilogue blocks, blocks that are already free, or invalid pointers.

● mm_realloc(): The mm_realloc() routine returns a pointer to an allocated region of at

least size bytes with the following constraints.
○ if ptr is NULL, the call is equivalent to mm_malloc(size);
○ if size is equal to zero, the call is equivalent to mm_free(ptr), and should return

NULL.
○ if ptr is not NULL, it must have been returned by an earlier call to mm_malloc()

or mm_realloc(). mm_realloc() should then return a pointer to a block of
memory of at least size bytes. This memory in this block must be equal to the
original memory in the block pointed to by ptr up to the minimum of the new and
old sizes. That is, if the original memory has a greater size than the size
requested, the memory will be shortened to the new constraint. If the original
memory has a smaller size, only the memory up to the original size should be
equal. If the memory pointed to by ptr is moved, then ptr should be freed and
the new memory location should be returned. If the routine needs to allocate
memory and the memory cannot be allocated, the memory pointed to by ptr
should not be changed, and the routine should return NULL.

○ A non-naive implementation of realloc is required for full credit. The more
efficient you make it, the more points you will get! Specifically, you cannot receive
full credit for realloc without 45% utilization or higher.

○ It is the responsibility of the programmer to not pass blocks that have already
been freed to any other function, so you will not be expected to handle
realloc() on a free block.

● mm_check_heap(): This function examines the state of the heap. Dynamic memory

allocators can be very difficult to correctly and efficiently program and debug. Writing a
heap checker that scans the heap and checks it for consistency will help immensely with
debugging.

4

CSCI0330 Intro Computer Systems Doeppner

Be sure to document your heap checker. If there are problems with your code, a heap
checker will help your grader resolve some of those problems.

Be sure mm_check_heap() isn’t being called before you hand in your project, since this
will drastically slow down your allocator’s performance. You can either remove any calls
to mm_check_heap() or create a macro that will call mm_check_heap() when turned on.
When there is an error, your heap checker should print information about your heap with
an error message before exiting. It is up to you to decide how you’d like to do this, but if
you use assert statements they can only be used within mm_check_heap().
Alternatively, you can use fprintf and exit(1).

Heap Checker Requirements:

○ Your heap checker must only print out when something is wrong with the heap.
Otherwise, constantly printing out the state of the heap can result in an
overwhelming amount of printing, which doesn’t help you debug (and make our
grading harder).

○ Your heap checker must address the following questions:
■ Is every block in the free list marked as free?
■ Are all free blocks coalesced?
■ Is every block in bounds of the heap?

○ At a minimum, your mm_check_heap() implementation must print the block
address, block size, and type of heap error when an error in the heap is detected.
We recommend liberally using assert statements to catch heap errors.

Optional (but recommended) Checks:

○ Check that every block that is free is in the free list. (This will make the heap
checker slow, so factoring this check in a separate function is recommended)

■ This will catch if any block in the heap is free and is not also included in
the free list (all blocks in the free list can be accessed by iterating from
flist_first)

○ Check that the header and footers match
○ Check that the blocks in your heap are aligned
○ Check that the first block in the heap is the prologue and the last block is the

epilogue

3.2 Support Routines
The memlib.c package simulates the memory system for your dynamic memory allocator. You
can invoke the following functions in memlib.c:

● void *mem_sbrk(int incr): Expands the heap by incr bytes, where incr is a

positive non-zero integer and returns a generic pointer to the first byte of the newly

5

CSCI0330 Intro Computer Systems Doeppner

allocated heap area. The semantics are identical to those of the Unix sbrk() function,
except that mem_sbrk() accepts only a positive non-zero integer argument.

● void *mem_heap_lo(void): Returns a generic pointer to the first byte in the heap.
● void *mem_heap_hi(void): Returns a generic pointer to the last byte in the heap.
● size_t mem_heapsize(void): Returns the current size of the heap in bytes.
● size_t mem_pagesize(void): Returns the system’s page size in bytes (4K on Linux

systems).

The following functions are included in mminline.h. These are helpful abstractions of the logic
used to do parts of what is necessary to implement the memory management functions
described above. It is required to use these in your code for full credit.

Make sure you understand these functions before you start to code!

● block_t *flist_first: This is a pointer for the head of the free list.
● size_t block_allocated(block_t *b): Returns 1 if allocated, 0 if free.
● size_t block_end_allocated(block_t *b): Same as above, but checks at the end

tag of the block.
● size_t block_size(block_t *b): Returns the size of the block.
● size_t block_end_size(block_t *b): Same as above, but uses the endtag of the

block.
● void block_set_size(block_t *b, size_t size): Records the size of the block in

both the beginning and end tags.
● void block_set_allocated(block_t *b, size_t allocated): Sets the allocated

flags of the block, at both the beginning and the end tags. This must be done after the
size has been set.

● void block_set_size_and_allocated(block_t *b, size_t size, int

allocated): A convenience function to set the size and allocation of a block in one call.
● size_t block_prev_allocated(block_t *b): Returns 1 if the previous block is

allocated, 0 otherwise.
● size_t block_prev_size(block_t *b): Returns the size of the previous block
● block_t *block_prev(block_t *b): Returns a pointer to the previous block.
● block_t *block_next(block_t *b): Returns a pointer to the next block.
● size_t block_next_allocated(block t *b): Returns 1 if the next block is allocated,

0 otherwise.
● block_t *payload_to_block(void *payload): Given a pointer to the payload,

returns a pointer to the block.
● size_t block_next_size(block t *b): Returns the size of the next block.
● block_t *block_next_free(block t *b): Returns a pointer to the next free block in

the free list.
● void block_set_next_free(block t *b, block t next): Sets the pointer to the

next free block.

6

CSCI0330 Intro Computer Systems Doeppner

● block_t *block_prev_free(block t *b): Returns a pointer to the previous free
block in the free list.

● void block_set_prev_free(block t *b, block t prev): Sets the pointer to the
previous free block.

● void pull_free_block(block t *fb): Pulls a block from the (circularly doubly linked)
free list.

● void insert_free_block(block t *fb): Inserts block into the (circularly doubly
linked) free list.

4 The Trace-driven Driver Program (mdriver)
The driver program mdriver.c tests your mm.c package for correctness, space utilization, and
throughput. The driver program is controlled by a set of trace files which you can find in

/course/cs0330/pub/malloc/traces.

You can read and test files in this directory, though you do not necessarily need to run them
apart from through mdriver.c. Before each trace, mm_init() is called, so use mm_init() to
initialize anything that you use. Each trace file contains a sequence of allocate, reallocate, and
free directions that instruct the driver to call your mm_malloc(), mm_realloc(), and mm_free()
routines in some sequence. The driver and the trace files are the same ones we will use when
we grade your handin mm.c file. It may be helpful for you to look at these. The driver
mdriver.c accepts the following command line arguments:

● -t <tracedir>: Look for the default trace files in directory tracedir/ instead of the

default directory defined in config.h.
● -f <tracefile>: Use one particular tracefile for testing instead of the default set of

tracefiles.
● -h: Print a summary of the command line arguments.
● -l: Run and measure libc malloc in addition to the student’s malloc package.
● -v: Verbose output. Prints a performance breakdown for each tracefile in a compact

table.
● -V: More verbose output. Prints additional diagnostic information as each trace file is

processed. Useful during debugging for determining which trace file is causing your
malloc package to fail.

Important: You should aim to get a yes for consistency for every trace. This is mandatory (but
not sufficient) in order to receive full credit.

7

CSCI0330 Intro Computer Systems Doeppner

5 Using the REPL
In addition to the test suite, we have also provided a REPL that allows you to test any series of
allocation commands against your solution. The REPL can be accessed via the command
./mdriver -r . Valid commands for the REPL and their syntax can be found by typing help
into the REPL.

The REPL is initiated with references to 1024 unique block pointers you can use across
commands. Each of these pointers can be accessed via its corresponding <index> number. (For
instance, where in code you would call malloc(&block, 1024), in the REPL, this can be
achieved via malloc 0 1024 to allocate the block at index 0.) You can test your error checking
by passing in -1 as the block index. This will execute the corresponding function as if a NULL
pointer was passed in for the pointer parameter. Note that the index pointers only point to a
valid block if the pointer has been malloc’d.

The print command prints the heap, including all blocks in it, allocated and free, from the
prologue to the epilogue, along with some other information about the heap. You can also print
information about a specific block in the REPL by calling print -b <index>.

If you have a specific case you’re trying to debug with the repl, to avoid typing in the same
commands again and again, you can use file redirection like you did with Traps to feed the
REPL commands. The syntax for running the REPL with a file as inputs is ./mdriver -r <
input.txt .

An example REPL interaction is as follows:

Welcome to the Malloc REPL. (Enter 'help' to see available commands.)

> malloc 0 100

> malloc 1 40

> malloc 2 60

> print

heap size: 544

prologue block at 0x7f2aa37db010 size 16

free block block at 0x7f2aa37db020 size 256 Next:

0x7f2aa37db020

block[2] allocated block at 0x7f2aa37db120 size 80

block[1] allocated block at 0x7f2aa37db170 size 56

block[0] allocated block at 0x7f2aa37db1a8 size 120

epilogue block at 0x7f2aa37db220 size 16

> free 2

> print

8

CSCI0330 Intro Computer Systems Doeppner

heap size: 544

prologue block at 0x7f2aa37db010 size 16

free block block at 0x7f2aa37db020 size 336 Next:

0x7f2aa37db020

block[1] allocated block at 0x7f2aa37db170 size 56

block[0] allocated block at 0x7f2aa37db1a8 size 120

epilogue block at 0x7f2aa37db220 size 16

> free 0

> realloc 1 100

> print

heap size: 544

prologue block at 0x7f2aa37db010 size 16

free block block at 0x7f2aa37db020 size 336 Next:

0x7f2aa37db020

block[1] allocated block at 0x7f2aa37db170 size 176

epilogue block at 0x7f2aa37db220 size 16

The first 3 commands malloc 3 blocks, assigning them indices 0, 1, and 2. Printing the heap
shows the 3 blocks as well as a free block of size 256. After freeing block 2, printing the heap
again shows that it is coalesced with the free block. Next, block 0 is freed, clearing up space for
expanding block 1 in the realloc command. In the last print, block 1 is extended into the space
formerly used by block 0.

6 Programming Rules
● You should not change any of the interfaces in mm.c.
● Do not invoke any memory-management related library calls or system calls. This forbids

the use of malloc(), calloc(), free(), realloc(), sbrk(), brk() or any
variants of these calls in your code.

● You are not allowed to define any global or static compound data structures such as
arrays, trees, or lists in your mm.c program. However, you are allowed to declare global
scalar variables such as integers, floats, and pointers in mm.c.

○ There is a block struct defined in mm.h, which you must use for full credit. You
may not allocate any structs in the global namespace (no global structures).

● For consistency with the libc malloc() package, which returns blocks aligned on
8-byte boundaries, your allocator must always return pointers that are aligned to 8-byte
boundaries. The driver will enforce this requirement for you.

● Do not use mmap in your implementation of any of these functions!

9

CSCI0330 Intro Computer Systems Doeppner

7 GDB
Using GDB will make the debugging process for this project significantly easier and is highly
recommended.

7.1 Useful Commands
● backtrace or bt is especially useful for tracking down assert failures (which raise the

signal SIGABRT).

● print or p evaluate and print out arbitrary expressions, such as:

(gdb) p *block {size = 4088, payload = 0x7ffff6631078}

or

 (gdb) p mm_check_heap() \$1 = 0

Be aware that printing an expression may produce side effects.

● break or b [if] will pause execution on entering function name or before executing
filename:line#. If filename is omitted, it defaults to the current file. If you include the
optional if , gdb evaluates expr each time the breakpoint is reached, and only breaks if it
evaluates to true. Be careful of exprs with side effects!

● continue or c will resume execution of a program until it is stopped by error, by break
point, or by finishing.

● watch puts a watchpoint on expr. Whenever the value of expr changes, gdb will display
the old and new values and pause execution of the program. For example, if you are
trying to figure out where the size of a particular block b changes, you can use watch
block size(b). More details can be found here.

● layout src displays your code and highlights the line you are currently on. Lines with
breakpoints will have a ‘b+’ on the left.

8 Hints
● Disable optimizations when debugging. On line 2 of the makefile, set -O2 to -O0. This

will make debugging easier by disabling optimizations like function inlining. Remember
to re-enable optimizations before handing in!

● Use gdb.

10

CSCI0330 Intro Computer Systems Doeppner

● Use the mdriver -f option. During initial development, using tiny trace files will simplify
debugging and testing. We have included two such trace files (short1,2-bal.rep) that
you can use for initial debugging. We suggest you make your own!

● Use the mdriver -v and -V options. The -v option will give you a detailed summary for
each trace file. The -V will also indicate when each trace file is read, which will help you
isolate errors.

● Read/Step through and understand the functions in mminline.h. Once you know 2

how to manipulate blocks, you’ll be able to concentrate on the higher-level details of your
implementation.

● Don’t forget to initialize flist_first to NULL in mm_init, otherwise some of the traces
will behave strangely.

● You may want to consider using the memcpy() and memmove() syscalls for copying
between two areas of memory. A key difference between the two is that memcpy() does
not allow overlap between the two areas of memory, whereas memmove() does. Check
the man pages for more detail (via man memcpy and man memmove)! If memcpy() is
exhibiting strange behavior during realloc(), specifically look for what happens when
dst and src overlap, and how to remedy this.

● Start early! This is generally good advice, but while this project does not necessarily
require you to write a lot of code, figuring out what to write can be quite difficult. This
project relies heavily on a conceptual understanding of the first-fit explicit-free list, so we
strongly recommend reviewing the malloc lectures and coming to TA hours for
conceptual help, as well as outlining what each function should do on a high level before
starting to code.

9 Getting Started
Do your implementation in stages. We understand it is tempting to build everything before
testing, but we promise you, it will make your debugging much easier if you test as you go. The
first 8 traces in our test suite contain requests only to mm_malloc() and mm_free(), and should
not require complete coalescing to pass. The next two traces contain only requests to
mm_malloc() and mm_free(), but will not pass until your implementation coalesces blocks
correctly. The last two traces additionally contain requests to mm_realloc(). The traces run by
mdriver are defined by the TRACEFILES definition in the provided Makefile. At first, only the
BASE TRACEFILES are enabled (the first 8 traces). When you are ready, enable the rest by
uncommenting them in the Makefile.

Here is a strongly recommended roadmap:

1. mm_init: The first steps you should take is ensuring that mm_init is working as
expected. After writing the function, you can test for this by running the malloc REPL and

2 Thoroughly understanding what each inline function does will save you a lot of headaches and
extraneous code!

11

CSCI0330 Intro Computer Systems Doeppner

immediately calling print. This will attempt to print all the blocks in your heap. If your
heap is set-up correctly, this should pass without any errors.

2. mm_check_heap: This will be necessary for debugging as you write mm_malloc and

mm_free. You can write this method as you write mm_malloc and mm_free.

mm_malloc: Start by ensuring that you can malloc a single block of a normal size to the
heap. Print the heap thereafter, and run your check_heap in the REPL to ensure that the
list is still valid. From here, try adding more blocks of different sizes, running check_heap
liberally.

mm_free: Start by ensuring that you can malloc a block, print the heap, free it, then
print the heap again, inspecting the heap and checking that it’s valid along the way.

Once you write the basic functionality of mm_malloc (without optimizations, such as
coalescing) and mm_free, you should be able to pass the first 8 base trace files.

3. Optimize mm_malloc and mm_free with coalescing. It will be easier for you debug

coalescing if you add this optimization once you have the basic functionality working.

At this point, try running the next two traces specifically for coalescing. Make sure to
modify the Makefile and add the COALESCE_TRACEFILES flag so that the mdriver
runs both base and coalescing trace files.

4. mm_realloc: Once you are finished with the above functions, you can start by just
malloc’ing then realloc’ing a single block. Thereafter, it’s a matter of mixing malloc and
free commands. Using the print command in the REPL, you can see where there are
free blocks in your heap, and use that to call realloc in such a way that it will force
coalescing. As always, check the heap thoroughly throughout.

Once you implement mm_realloc, add the REALLOC_TRACEFILES flag in the Makefile
to run the last two traces that additionally test your realloc! Slowly add in optimizations to
reach the target performance.

If you’re still confused on starting or are having trouble with the concepts, come to conceptual
hours, and go through gearup slides!

10 Working from Home
If you wish to do this project locally on a 64-bit Linux or Mac, first download your files and the
tracefiles. Then open up your config.h and modify TRACEDIR to point to the location of the
traces. Keep in mind, however, that it is your own responsibility to make sure your project works

12

CSCI0330 Intro Computer Systems Doeppner

on the department machines before handing it in. Alternatively, you can use an ftp client like
cyberduck to make working over ssh easier.

11 Grading
If your letter grade is D, you will have a week after grades release to bump up your grade to C-
by passing the base traces with consistent heap.

You must implement malloc with a first-fit explicit-free-list, and use the inline functions.
Otherwise, even if you pass the traces, you will receive major point deductions.

Your grade will be calculated according to the following categories, in order of weight:

● Code Correctness. You must hand in a 64-bit implementation that uses an explicit
free-list. Otherwise, you will receive a major point deduction.

● Functionality
○ Heap consistency should be maintained across traces.
○ You should aim for 90% utilization for the coalescing traces (use the -v flag) for

full credit.
○ Your heap checker should detect heap inconsistencies (see section 2.1).

● Style
○ Your code should be decomposed into functions and avoid using global variables

when possible.
○ Your code should be readable, well-documented, and well-factored.
○ You should provide a README file which documents the following:

■ a description of your strategy for maintaining compaction (i.e. how are you
preventing your heap from turning into a bunch of tiny free blocks?)

■ what your heap checker examines
■ your mm_realloc() implementation strategy
■ unresolved bugs with your program
■ any other optimizations

○ Each function should have a header comment that describes what it does and
how it does it.

○ Consult the C Style document (which is on the website) for some pointers on C
coding style. Note that you can run a style formatting script in order to make your
code match some of the style specifications. To use the script, run the command

cs0330_reformat <file1> <file2> …

Check the style guide for more information.

● Performance: Two performance metrics will be used to evaluate your solution:
○ Space utilization: The peak ratio between the aggregate amount of memory

used by the driver (i.e., allocated via mm_malloc() or mm_realloc() but not yet
freed via mm_free() and the size of the heap used by your allocator). The

13

http://cs.brown.edu/courses/cs033/docs/guides/style.pdf

CSCI0330 Intro Computer Systems Doeppner

optimal ratio is 1. You should find good policies to minimize fragmentation in
order to make this ratio as close as possible to the optimal. In order to get close
to perfect utilization, you will have to find your own ways to use every last bit of
space.

○ Throughput: The average number of operations completed per second. This is
dependent on the optimizations you’ve implemented, which we grade based on
your explanation in the README.

The driver program summarizes the performance of your allocator by computing a
performance index, P, which is a weighted sum of the space utilization and throughput
where U is your space utilization, T is your throughput, and Tlibc is the estimated
throughput of libc malloc on your system on the default traces. The performance index
favors space utilization over throughput, with a default of w = 0.8. Observing that both
memory and CPU cycles are expensive system resources, we adopt this formula to
encourage balanced optimization of both memory utilization and throughput. Ideally, the
performance index will reach P = w + (1 − w) = 1 or 100%. Since each metric will
contribute at most w and 1−w to the performance index, respectively, you should not go
to extremes to optimize either the memory utilization or the throughput only. Although
there are no specific cutoffs, to receive a good score from the driver, you must achieve a
balance between utilization and throughput.

12 Handing In
To hand in your dynamic memory allocator, run

cs0330_handin malloc

from your project working directory. Make sure you hand in both your mm.c file and README. If
you wish to change your handin, you can do so by re-running the handin script. Only your most
recent handin will be graded.

Important note: If you have handed in but plan to hand in again after the TAs start grading, in
addition to running the regular handin script, you must run cs0330_grade_me_late malloc to
inform us not to start grading you yet. You must run the script by Monday, November 25th,
2019, at 11:59pm.

14

