

CSCI0330 Intro Computer Systems Doeppner

Buffer
Due: October 9, 2019 at 11:59pm

1 Introduction 1

2 Assignment 2

3 Understanding Stack 2

4 Userids and Cookies 4

5 The buffer Program 5

6 Phases 8
6.1 Level 1: Turning off the lights (24 pts) 8
6.2 Level 2: Raising the water level (24 pts) 10
6.3 Level 3: Get them out of there! (32 pts) 10
6.4 Level 4: Saving all the animals (20 points) 11

7 Generating Machine Code 13

8 gdb 14

9 README 15

10 Grading 15

11 Handing In 15

1 Introduction

A gang of sea creatures in C-world have convened and decided that they want more from life
than standing around looking pretty. They decide to plan a daring escape from C-world, with
ambitions to make it big in the ocean. Octavius the Octopus, Susan the Shark, and Pretzel the
Crab need your help to execute their escape without the C-world security guards catching them.

After brainstorming for a while, they decided that messing with C-World’s computer systems
was the way to go, and came up with an elaborate plan after learning a little bit of x86-64
assembly and architecture.

1

CSCI0330 Buffer October 9, 2019

2 Assignment
To install the project, run cs0330_install buffer from the command line. The script will
create a directory called ~/course/cs0330/buffer/ in your home directory that contains the
binaries needed for this assignment.

This assignment will help you develop a detailed understanding of x86-64 calling conventions
and stack organization. It involves applying a series of buffer overflow attacks on an executable
file called buffer.

In this project, you will gain firsthand experience with one of the methods commonly used to
exploit security weaknesses in operating systems and network servers. Our purpose is to help
you learn about the runtime operation of programs and to understand the nature of this form of
security weakness so that you can avoid it when you write system code. We do not condone the
use of this or any other form of attack to gain unauthorized access to any system resources.

This assignment contains the following files:

• buffer: The buffer program you will attack.
• makecookie: Generates a “cookie” based on your userid.
• hex2raw: A utility to help convert between string formats.

Your task during this assignment is to use buffer overflow attacks to cause the buffer program
to behave in unexpected ways.

3 Understanding Stack
Before we get into more assignment details, it is important that you understand how stack
frames get set up in the x86 architecture when functions are called. Below is a brief overview,
but if you would like to get more information, we highly encourage you to review lecture
materials and go to TA hours.

First of all, what is the stack? It is a region of memory that is used to store information about
function calls. The stack consists of stack frames, where a stack frame is some amount of
memory allocated for a function call, used to keep the information pertaining to that particular
function invocation, such as local variables. Think one stack frame per one function call. Every
time a function is called, we allocate a new stack frame, and every time a function exits, the
stack frame for that call becomes available to use again.

Suppose we have nested invocations, like function A calling function B, which calls function C.
Then, we first create a stack frame for A. Once A calls B, we make a stack frame for B on top of
A’s stack frame. And lastly, we make a stack frame for C on top of that of B. Once C exits, we

2

CSCI0330 Buffer October 9, 2019

“free” its stack frame, and go back to B. Once B exits, we pop off the stack frame for B, and
lastly, we free A’s frame. As you can see, the stack is managed in the LIFO order (last in, first
out).

Let’s take a closer look at how a stack frame is managed. The base register, rbp, points to the
base of the current stack frame, and the stack pointer, rsp, points to the top of the current stack
frame. The stack can grow by decreasing the value of rsp (remember that the stack starts at a
high memory address and grows downwards). Note that in x86-64, we usually do not use the
base register. However, because we are compiling our programs with low optimization (with the
-O0 flag) to make the assignment easier to work through, rbp is still used in this assignment.

Here are two example functions in C:

int callee(int a, int b) {

int newA = a + 2;

int newB = b + 3;

return newA + newB;

}

int caller() {

int a = 2;

int b = 3;

int c = callee(a, b);

printf(“%d”, c);

}

When the function caller calls the function callee, a new stack frame is prepared for the
callee. First, it pushes a return address onto the stack. A return address is the address of the
next instruction after coming back from callee, so in this case it would be the address of
“printf(“%d”, c);”.

The next step is pushing the value of rbp. Currently rbp stores the base address of caller’s
stack frame. The reason why we do this step is because rbp now needs to store the base
address of callee’s stack frame, but we need to somehow be able to get back the base
address of caller again and go back to caller’s stack frame when callee is done. So we
temporarily push this value on the stack so we can retrieve it later.

The stack now looks like the diagram below:

3

CSCI0330 Buffer October 9, 2019

And lastly, in x86-64, arguments are passed through registers. Specifically, rdi is used to store
the first argument (for callee, this would be the argument a), rsi for the second argument (the
argument b), rdx for the third argument, so on and so forth.

Now, the stack grows as necessary to store local variables for callee (in this case, newA and
newB). We perform the computation, and once we hit the return statement, the stack shrinks,
and it pops the old rbp value we pushed onto the stack previously (so now rbp points to the
base of caller’s stack frame). Lastly it pops off the return address, and goes back to the next
instruction to execute in caller.

4 Userids and Cookies
Phases of this project will require a slightly different solution from each student. The correct
solution will be based on your userid.

A cookie or hash is a string of eight hexadecimal digits generated from your userid in such a
way that distinct userids will (with high probability) produce distinct cookies. You can generate
your cookie with the makecookie program, giving your userid as the argument. For example:

./makecookie pretzel

0x5146a9cd

4

CSCI0330 Buffer October 9, 2019

In three of your four buffer attacks, your objective will be to make your cookie show up in places
where it ordinarily would not. In two of those three attacks, you will accomplish this by supplying
machine code instructions to the buffer program.

A problem with doing so is that Linux does not allow data on the program stack to be executed
as machine instructions in an attempt to avoid such attacks, and the C-World servers just
happen to use Linux. However, Pretzel tricked the programmers that wrote libraries security into
moving the stack to a different, executable memory location. This means that the instructions
that you place on the stack can indeed be executed.

5 The buffer Program
The buffer program reads a string from standard input. It does so with the function getbuf
defined below:

/* Buffer size for getbuf */
#define NORMAL_BUFFER_SIZE 32

int getbuf() {
 char buf[NORMAL_BUFFER_SIZE];
 Gets(buf);
 return 1;
}

The function Gets() is similar to the standard library function gets()—it reads a string from
standard input (terminated by ‘\n’ or end-of-file) and stores it (along with a null terminator)
at the specified destination. In this code, you can see that the destination is an array buf having
sufficient space for 32 characters.

Gets() (and gets()) grabs a string off the input stream and stores it into its destination address
(in this case buf). However, Gets() has no way of determining whether buf is large enough to
store the whole input. It simply copies the entire input string, possibly overrunning the bounds of
the storage allocated at the destination.

If the string typed by the user to getbuf() is no more than 31 characters long (remember, it
must store the null terminator as well), getbuf() will correctly return 1, as shown by the
following execution example:

./buffer -u pretzel
Type string: I love CS 33.
Oops: getbuf returned 0x1

Typically an error occurs if a longer string is entered:

./buffer -u pretzel

5

CSCI0330 Buffer October 9, 2019

Type string: It is easier to love this class when you are a TA.
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffer typically causes the program state to be
corrupted, leading to a memory access error. Your task is to be more clever with the strings you
feed buffer so that it does more interesting things. These are called exploit strings.

buffer takes several different command line arguments:

-u userid: Operate the program for the indicated userid (required argument).
-h: Print list of possible command line arguments.
-n: Operate in “Nitro” mode, as is used in Level 4 below.

At this point, you should think about the x86-64 stack structure a bit and figure out what entries
of the stack you will be targeting. You may also want to think about exactly why the last example
created a segmentation fault, although this is less clear. Be aware that the buffer starts at the
top of the stack (the lowest memory address in the stack) and grows towards the bottom
(towards higher addresses).

6

CSCI0330 Buffer October 9, 2019

Your exploit strings will typically contain byte values that do not correspond to the ASCII values
for printing characters. The program hex2raw can help you generate these raw strings. It takes
as input a hex-formatted string. In this format, each byte value is represented by two hex digits.
For example, the string “012345” could be entered in hex format as “30 31 32 33 34 35”.
(Recall that the ASCII code for decimal digit d is 0x3d.)

The hex characters you pass hex2raw should be separated by whitespace (blanks or newlines).
We recommend separating different parts of your exploit string with newlines while you’re
working on it. hex2raw also supports C-style block comments, so you can mark off sections of
your exploit string. For example:

bf 66 7b 32 78 /* mov $0x78327b66,%edi */

Be sure to leave space around both the starting and ending comment strings ("/*" and "*/") so
they will be properly ignored.

If you generate a hex-formatted exploit string in the file exploit.txt, you can apply the raw string
to buffer in several different ways:

1. You can set up a series of pipes to pass the string through hex2raw.

cat exploit.txt | ./hex2raw | ./buffer -u pretzel

2. You can store the raw string in a file and use I/O redirection to supply it to buffer:

./hex2raw < exploit.txt > exploit-raw.txt

./buffer -u pretzel < exploit-raw.txt

This approach can also be used when running buffer from within gdb:

gdb buffer
(gdb) run -u pretzel < exploit-raw.txt

Important points:

• Your exploit string must not contain byte value 0x0A at any intermediate position, since
this is the ASCII code for newline (‘\n’). When Gets() encounters this byte, it will
assume you intended to terminate the string.

• hex2raw expects two-digit hex values separated by a whitespace. So if you want to
create a byte with a hex value of 0, you need to specify 00. To create the word
0xDEADBEEF you should pass DE AD BE EF to hex2raw.

• The CS department machines are little-endian, which means that the least-significant
byte of a word is read first. This means that you should enter addresses into your hex
string in reverse order, e.g. 17 42 04 08 for address 0x08044217.

7

CSCI0330 Buffer October 9, 2019

• It is not acceptable to jump directly to the validate() function calls. The goal of this
assignment is to understand the x86-64 program stack by manipulating and exploiting it -
jumping directly to validate() in each phase circumvents the need for any such
understanding, and you will not receive credit for solutions that do this.

• Your exploit strings should not cause segmentation faults. The following output of the
buffer program is not valid:

Userid: pretzel
Cookie: 0x12345678
Type string: <string>
BEEP BEEP!: getbuf returned 0x12345678
VALID
NICE JOB!
Ouch!: You caused a segmentation fault!
Better luck next time

More generally, it is not sufficient to receive the VALID NICE JOB! confirmation. If your
goal is to get the program to set or return a particular value, it must actually do this!

6 Phases
This project consists of four phases of buffer overflow attacks. The manner of attack will be
slightly different in each phase.

6.1 Level 1: Turning off the lights (24 pts)
Pretzel crawls out of his tank, and goes to unlatch Octavius and Susan’s tanks. But the lights
are on, so security might see him. Pretzel needs you to turn the lights off! The function
getbuf() is called within buffer by a function test_exploit() having the following C code:
void test_exploit() {
 int val;
 /* Put canary on stack to detect possible corruption */
 volatile int local = uniqueval();

 val = getbuf();

 /* Check for corrupted stack */
 if (local != uniqueval()) {
 printf("Sabotaged!: the stack has been corrupted\n");
 }

 if (val == cookie) {
 printf("BEEP BEEP!: getbuf returned 0x%x\n", val);
 validate(4);

8

CSCI0330 Buffer October 9, 2019

 } else {
 printf("Oops: getbuf returned 0x%x\n", val);
 }
}

When getbuf() executes its return statement (line 5 of getbuf()), the program ordinarily
resumes execution within function test_exploit() (at line 7 of that function). We want to
change this behavior.

Within the file buffer, there is a function lights_off() having the following C code:

void lights_off()
{

printf("\"What?\": The lights are off!\n");
validate(1);
exit(0);

}

Your task is to get buffer to execute the code for lights_off() when getbuf() executes its
return statement, rather than returning to test_exploit(). Note that your exploit string may
also corrupt parts of the stack not directly related to this stage, but this will not cause a problem,
since lights_off() causes the program to exit directly.

Some advice:

• Writing assembly code is not required for this level.

• All the information you need to devise your exploit string for this level can be
determined by examining a disassembled version of buffer. objdump -d buffer >
obj.txt will disassemble the contents of the buffer executable to obj.txt. This file will
then contain each function’s name, with all of its instructions and the addresses of those
instructions.

• Be careful about byte ordering.

• You might want to use gdb to step the program through the last few instructions of
getbuf to make sure it is doing the right thing.

• The placement of buf within the stack frame for getbuf() depends on which version of
gcc was used to compile buffer, so you will have to read some assembly to figure out
its true location.

• si is a gdb command which you can use to step over a single x86-64 instruction. step
and next won’t do this sometimes, but si never fails to do so. Use this command well.

• ni is like si, but will execute calls as single instructions, rather than stepping into them.

9

CSCI0330 Buffer October 9, 2019

Put the hex-formatted exploit string for this level in a file named lights.txt (with any
comments not in your README).

6.2 Level 2: Raising the Water Level (24 pts)

The trio realize that they won’t all be able to escape via land, so they decide to flood the C-world
floor. To do this, they decide to raise the water level on all tanks in their room. They know that
the water level for all the tanks is controlled by the central C-world computer. To make sure they
can safely leave their tanks, Pretzel, Susan, and Octavius need you to raise the water level
setting for their room! To do this, they have to open the four water valves in their room enough
so that the water level is 20ft or higher.

Within the file buffer there is a function water_level() having the following C code:

struct water_level{
 int id;
 int valves[4];
};

void water_level(struct water_level lvl)
{
 int total_lvl = find_level(lvl.valves);
 if (lvl.id == cookie && total_level >= 20) {
 printf("SUCCESS!: You raised the water level!({0x%x, %d})\n",
 lvl.id, total_lvl);
 validate(2);
 } else {

 printf("Water level change failed!: You called room({0x%x, %d})\n",
 lvl.id, total_lvl);

 }
 exit(0);
}

Similar to Level 1, your task is to get buffer to execute the code for water_level() rather
than returning to test_exploit(). In this example, though, you must make it look like your
data is the argument to water_level(). How might this work?

Note that the program should not explicitly call water_level()—it will simply execute its code.
This has important implications for where on the stack you want to place your cookie and other
data. Just like in Level 1, writing assembly is not required for this level.

Put the hex-formatted exploit string for this level in a file named water.txt (with any
comments not in your README).

10

CSCI0330 Buffer October 9, 2019

6.3 Level 3: Get them out of there! (32 pts)

Now it is time to do what we came here for, get Pretzel, Susan, and Octavius out of there! This
is going to be tricky because it must be done without C-world security detecting what’s
happening or the plan will not work! So the program must not crash or have a premature exit.

Our preceding attacks have all caused the program to jump to the code for some other function,
which then causes the program to exit. As a result, it was acceptable to use exploit strings that
corrupt the stack. The most sophisticated form of buffer overflow attack causes the program to
execute some exploit code that changes the program’s register/memory state, but makes the
program return to the original calling function (test_exploit() in this case). The calling
function is oblivious to the attack. This style of attack is tricky, though, since you must:

1) get machine code onto the stack,

2) set the return pointer to the start of this code, and

3) undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that will cause getbuf() to return your cookie
back to test_exploit(), rather than the value 1. You can see in the code for test_exploit()
that this will cause the program to go "BEEP BEEP!". Your exploit code should set your cookie
as the return value, restore any corrupted state, push the correct return location on the stack,
and execute a ret instruction to really return to test_exploit().

Some advice:

• You can use gdb to get the information you need to construct your exploit string. Set a
breakpoint within getbuf() and run to this breakpoint. Determine parameters such as
the saved return address.

• Determining the byte encoding of instruction sequences by hand is tedious and prone
to errors. You can let tools do all of the work by writing an assembly code file containing
the instructions and data you want to put on the stack. Assemble this file with gcc and
disassemble it with objdump. You should be able to get the exact byte sequence that
you will type at the prompt. An example of doing this is contained in section 6.

• Keep in mind that your exploit string depends on your machine, your compiler, and
even your userid’s cookie. Do all of your work on the department machines, and make
sure you include the proper userid on the command line to buffer.

Put the hex-formatted exploit string for this level in a file named escape.txt (with any
comments not in your README).

11

CSCI0330 Buffer October 9, 2019

6.4 Level 4: Saving all the animals (20 points)

The trio have successfully escaped C-world, but they want to create a program that will help
other ambitious sea animals escape on their own.

For this phase you’ll need to run the buffer program in “nitro mode” by using the -n
command-line flag.

From one run to another, especially by different users, the exact stack positions used by a given
procedure will vary. One reason for this variation is that the values of all environment variables
are placed near the base of the stack when a program starts executing. Environment variables
are stored as strings, requiring different amounts of storage depending on their values. Thus,
the stack space allocated for a given user depends on the settings of his or her environment
variables. Stack positions also differ when running a program under gdb, since gdb uses stack
space for some of its own state.

In the code that calls getbuf(), we have incorporated features that stabilize the stack, so that
the position of getbuf()’s stack frame will be consistent between runs. This made it possible
for you to write an exploit string knowing the exact starting address of buf. If you tried to use
such an exploit on a normal program, you would find that it works sometimes, but it causes
segmentation faults at other times.

For this level, we have gone the opposite direction, making the stack positions even less stable
than they normally are.

When you run buffer with the command line flag “-n,” it will run in “Nitro” mode. The program
calls a slightly different function getbufn():

int getbufn() {
 char buf[BUFFER_SIZE];
 Gets(buf);
 return 1;
}

This function is similar to getbuf(), except that it has a buffer of 512 characters. You will need
this additional space to create a reliable exploit. The code that calls test_exploitn() (which
calls getbufn()) first allocates a random amount of storage on the stack, such that if you
sample the value of %rsp during two successive executions of test_exploitn() or getbufn(),
you would find they differ by as much as 240. As a result, the addresses you used to solve
previous phases may not work in this phase.

In addition, when run in Nitro mode, buffer requires you to supply your string 5 times, and it will
execute getbufn() 5 times, each with a different stack offset. Your exploit string must make it
return your cookie each of these times.

12

CSCI0330 Buffer October 9, 2019

Your task is identical to the task for the level “Get them out of there!”. Once again, your job for
this level is to supply an exploit string that will cause getbufn() to return your cookie back to
test exploit, rather than the value 1. You can see in the code for test exploit that this will cause
the program to go “Woo.” Your exploit code should set your cookie as the return value, restore
any corrupted state, push the correct return location on the stack, and execute a ret instruction
to really return to test_exploitn().

Some Advice:

• You can use the program hex2raw to send multiple copies of your exploit string by
providing it with the command-line argument -n. Using hex2raw with the command-line
argument -n will send 5 copies of the exploit string provided. The command-line
argument -n for buffer will execute the buffer program in “Nitro” mode which expects 5
exploit strings. If you have a single copy in the file animals.txt, then you can use the
following command:

cat animals.txt | ./hex2raw -n | ./buffer -n -u pretzel

You must use the same string for all 5 executions of getbufn().

• The trick for this phase is to make use of the nop instruction. It is encoded with a single
byte (code 0x90). By including a sequence of nop instructions before your exploit code, if
the program jumps to any point in the sequence, it will ”slide” along until it reaches the
exploit code. Such a sequence of nops is known as a nop sled. More information about
nop sleds can be found on page 262 of the CS:APP textbook.

Put the hex-formatted exploit string for this level in a file named animals.txt (with any
comments not in your README).

7 Generating Machine Code
Using gcc as an assembler and objdump as a disassembler makes it convenient to generate
the bytes for instruction sequences. For example, suppose we write a file example.s containing
the following assembly code:

Example of hand-generated assembly code
push $0xabcdef # Push value onto stack
add $17,%eax # Add 17 to %eax
.align 4 # Following will be aligned on multiple of 4
.long 0xfedcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Anything to the right of a ‘#’. character
is a comment.

We can now assemble and disassemble this file:

13

CSCI0330 Buffer October 9, 2019

$ gcc -c example.s
$ objdump -d example.o > example.d

The generated file example.d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef
5: 83 c0 11 add $0x11,%eax
8: 98 cwtl
9: ba .byte 0xba
a: dc fe fdivr %st,%st(6)

Each line shows a single instruction. The number on the left indicates the starting address
(starting with 0), while the hex digits after the ‘:’. character indicate the byte codes for the
instruction. Thus, we can see that the instruction push $0xABCDEF has hex-formatted byte code
68 ef cd ab 00.

Starting at address 8, the disassembler gets confused. It tries to interpret the bytes in the file
example.o as instructions, but these bytes actually correspond to data. Note, however, that if we
read off the 4 bytes starting at address 8 we get: 98 ba dc fe. This is a byte-reversed version
of the data word 0xFEDCBA98. This byte reversal represents the proper way to supply the bytes
as a string, since a little endian machine lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 c0 11 98 ba dc fe

This string can then be passed through hex2raw to generate a proper input string we can give to
buffer. Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 /* push $0xabcdef */
83 c0 11 /* add $0x11,%eax */
98
ba dc fe

which is also a valid input we can pass through hex2raw before sending it to buffer.

You can check the output of the hex2raw program by running its output through the hexdump
program. This is a built-in Linux utility that outputs a human-readable hexadecimal
representation of a file. For more information, run man hexdump.

8 gdb
Here are some gdb commands that you may find helpful for this assignment:

• x/i $pc prints the current instruction.
• disassemble <function> prints each instruction (and its address) of <function>.
• info r prints the value contained in each register.

14

CSCI0330 Buffer October 9, 2019

• x/48b prints 48 bytes of memory. x/48b <address> prints the 48 bytes of memory
after <address>, and x/48xb will print 48 bytes of memory in hex (and remember $esp is
the address of the stack pointer!)
• tip: For more gdb commands, consult the gdb Cheatsheet (available on the website
and the assignment stencil).

Set breakpoints frequently and use these commands if you get stuck. However, do not set a
breakpoint on instructions which you have placed on the stack. Doing so may cause a null byte,
0x00, to replace one of your instruction bytes, which will very likely ruin that instruction (and the
ones following it).

9 README
You should have a very detailed explanation of each of your exploits in one of two places. Your
first option is to write a README file (which is required to hand in anyway) in which you explain
how each of your exploits works. Your second option is to use block comments (i.e. /*...*/)
within each of your exploit text files to explain the exploit, and then hand in a README saying that
you have done so. Ideally every block of your input string should be commented. If there is
anything unclear about commenting please go to TA hours. Comments are a significant portion
of your grade.

10 Grading
You will receive points for successfully exploiting each level and for your explanation.

• Level 1: Opening the tanks is worth 24 points (explanation is 4 points).
• Level 2: Raising the water level is worth 24 points (explanation is 4 points).
• Level 3: Getting them out of there is worth 32 points (explanation is 6 points).
• Level 4: Saving all the animals is worth 20 points (explanation is 4 points).

This assignment is worth 100 points total. A README or block comments within your exploit
files are necessary for this assignment. You will be penalized if you do not explain your work.

See the table below for guaranteed grade cutoffs. If you do not meet the threshold for a given
letter grade, you may still receive that grade after Professor Doeppner applies a curve (you will
only ever be curved up).

Grade Requirements

A Pass all 4 levels AND have reasonable explanations for all solutions (100 pts)

B Pass the first 3 levels AND have reasonable explanations for all solutions (80 pts)

15

https://cs.brown.edu/courses/csci0330/docs/guides/gdb_cheatsheet.pdf

CSCI0330 Buffer October 9, 2019

C Pass the first 2 levels AND have reasonable explanations for all solutions (48 pts)

Failing You can get your project checked off for a C up until the next project deadline

11 Handing In
Your handin for this assignment should include at least a text file for each phase containing your
input string for that phase, plus a README (there is no need to include the stencil files):

• lights.txt
• water.txt
• escape.txt
• animals.txt
• README

That is, the command

cat <phase>.txt | ./hex2raw | ./buffer -u <your login>

and

cat animals.txt | ./hex2raw -n | ./buffer -n -u <your login>

should solve the indicated phase (the autograder runs these commands). Be sure to create
these files after you solve each phase so that you don’t have to re-solve any of them.

To hand in your solutions, run

cs0330_handin buffer

from your project working directory.

If you wish to change your handin, you can do so by re-running the handin script. Only your
most recent handin will be graded.

Important note: If you have already handed in your assignment, but plan to hand in again after
the TAs start grading at noon on Saturday, October 12th, in addition to running the regular
handin script (cs0330_handin buffer), you must run cs0330_grade_me_late buffer to
inform us not to start grading you yet. You must run the script by noon on 10/12. If you run this
script, you will get grades back later than other students.

If you do not run this script, the TAs will proceed to grade whatever you have already handed in,
and you will receive a grade report with the rest of the class that is based on the code you
handed in before we started grading.

16

CSCI0330 Buffer October 9, 2019

If something changes, you can run the script with the --undo flag (before noon on 10/12) to tell
us to grade you on-time and with the --info flag to check if you’re currently on the list for late
grading.

These instructions apply to all projects unless otherwise stated on the handout.

17

