

CSCI 0330 Intro Computer Systems Doeppner

Lab 07 - Signals
Due: November 3, 2019 at ​10:00 PM

1 Introduction 1

2 Signals 2
2.1 Catching Signals 2
2.2 Asynchronous Signal Safety 2
2.3 Signals and Blocking Functions 3

3 Assignment 4
3.1 Part 1: Catching Signals 4

3.1.1 Signal Handlers 4
3.1.2 Installing Handlers 4
3.1.3 Additional Functionality 4
3.1.4 Expected Functionality for Part 1 5

3.2 Part 2: Sending and Responding to Signals 5
3.2.1 Implementing Signal Knocking 5
3.2.2 A Simple “Signal Knocker” 5
3.2.3 Sending a Signal 6
3.2.4 Getting the PID of a Process 6

4 Getting Checked Off 6

1 Introduction
At some point in your computer science career you have probably terminated a malfunctioning
program by pressing ​CTRL-C on the keyboard. The ability to do so is useful, since it allows you
to recover your session, even if the currently-running process has entered an infinite loop or will
not terminate in a reasonable amount of time. It also means that dangerous programs can be
terminated without resorting to a sword.

To provide the functionality of ​CTRL-C​, the operating system makes use of ​signals — tiny
messages that indicate that some event has occurred. Signals may occur as a result of system
events, such as segmentation faults or illegal instructions, and can also be sent by processes to
other processes. When you type ​CTRL-C ​in a terminal, the OS sends a signal called ​SIGINT to
the current foreground process group.

By default, a process will immediately terminate upon receiving a ​SIGINT signal, returning
control of the shell to the user. A similar sequence of events occurs when ​CTRL-\ ​or ​CTRL-Z

are typed. ​CTRL-\ is used to send the ​SIGQUIT signal, which instructs a process to exit
gracefully. ​CTRL-Z is used to send the ​SIGTSTP signal, which instructs a process to temporarily

1

CSCI 0330 Intro Computer Systems Doeppner

suspend its execution.

In this lab, you will learn how to override the default behavior for signals, and how to send
signals of your own.

Note:​ All of the labs in CS33 will be partner labs. Remember to fill out the partner form--you
must work with a different partner for each lab and can either choose your partner or go
random.

2 Signals
2.1 Catching Signals
The process of responding to a signal is called ​catching the signal. The usual way to specify 1

the program’s response to a signal is to write a function called a ​signal handle​r to perform the
desired actions. The signal handler must then be installed ​(tied to a particular signal) so that it
will be called when the signal is received. Each signal can have at most one signal handler, but
a single signal handler may be used for multiple signals.

To install a signal handler in C, you need to use the ​sigaction()​ function, which has the
following signature:

int sigaction(int signum, const struct sigaction *act, struct sigaction

*oldact);

The first argument specifies the signal id. Constants representing different signals are defined in
<signal.h>​. The ones you will be using in this lab are ​SIGINT​, ​SIGTSTP and ​SIGQUIT​. The
second argument to ​sigaction() is a ​struct sigaction that describes the action to
associate to that ​signal (in this case, calling a signal handler). This struct has several members
that you must initialize before passing it to the ​sigaction​ function:

• ​sa_handler​, a function pointer to your signal handler

• ​sa_mask​, the signals to mask off when executing the handler

•​ ​sa_flags​, a set of flags which modify the behavior of the signal

The last argument to ​sigaction()​,​ ​oldact​, is a pointer in which ​sigaction()​ will store the
previously bound action. This can be useful if you want to restore the old signal handler later. If
oldact​ is ​NULL​, then the previous action is discarded.

As usual, more information can be found on the appropriate ​man​ page. ​sigaction​ ​returns 0 on
success and -1 on error.

1While most signals can be caught by a process, there are two that cannot be: SIGSTOP and SIGKILL.
These signals force the process to pause and terminate, respectively.

2

CSCI 0330 Intro Computer Systems Doeppner

2.2 Asynchronous Signal Safety

Signals may either be ​synchronous or ​asynchronous​. Whereas synchronous signals are
generated within the program, asynchronous signals are generated by events outside of the
control of a process and can happen at any time. Asynchronous signals include I/O-related
signals and signals sent by other processes.

Signal handling can lead to problems if the handler interferes with what the program was doing
when the signal occurred. This is especially problematic for asynchronous signals, because you
cannot control when they may occur.

For instance, if a signal occurs in the middle of a buffered I/O function like ​printf()​, and the
signal handler also calls a buffered I/O function, the buffer may be corrupted or left in an
inconsistent state, leading to undesirable behavior.

Functions which are immune to this type of problem are called ​async-signal-safe​. A list of async-
signal-safe functions can be found on the signal (7) man page. All other syscalls and library
functions should be considered unsafe with respect to signals. In addition, modifying a global
variable should be considered an unsafe operation . 2

A more thorough understanding of concurrency issues is required to fully ensure asynchronous
signal safety. For this lab, the following safeguards should be sufficient:

● When installing the signal handlers, include all signals you will be catching in the ​struct
sigaction​’s ​sa_mask​ ​field. This will prevent signal handlers from interrupting each
other.

● If you call any async-signal-unsafe functions in your main code after installing the
handlers, mask off all relevant signals during the unsafe call. You should use the
sigprocmask()​ function to accomplish this. (See the ​main()​ function in the ​siglab.c
stencil for an example.)

2.3 Signals and Blocking Functions
Some blocking syscalls and library functions are affected by signals. The signal(7) man page
states the following:

If a signal handler is invoked while a system call or library function call is blocked, then
either:

● the call is automatically restarted after the signal handler returns; or
● the call fails with the error​ ​EINTR​.

2 ​An exception is​ ​sig_atomic_t​, which specifies an integer type that can be read or written with a single instruction,
so a signal cannot occur ”in the middle” of an access. The volatile modifier indicates to the compiler that the value of
the variable may be changed by things beyond a given section of code. This prevents the compiler from optimizing
out operations that may locally appear to have no effect, and instructs it to read the value from memory for each use,
rather than caching it in a register.

3

CSCI 0330 Intro Computer Systems Doeppner

Different functions exhibit different behavior when interrupted. You can also modify this behavior
when installing a signal handler by including the ​SA_RESTART flag in the ​sa_flags field of the
struct sigaction passed to ​sigaction()​. More detailed information can be found on the
signal(7) man page.

3 Assignment
This lab has two parts: first you will implement a short program that catches signals to override
the default behavior; then you will implement another program that sends signals to any
process.

To install the stencil for this assignment, run

cs0330_install lab07

3.1 Part 1: Catching Signals
In the first part of the lab, you will write a program that catches and handles​ ​SIGINT​, ​SIGTSTP​,
and ​SIGQUIT​. Stencil for this part is in ​siglab.c​.

3.1.1 Signal Handlers
The first step in this lab is to write signal handlers that deal with the ​SIGINT​, ​SIGQUIT and
SIGTSTP signals. These are functions (provided in the stencil) that take an integer argument
(representing the signal) and have return type ​void​. For now, each handler should just print out
a message to the user to indicate the signal was caught. Each signal should produce a different
message, for the sake of testing.

Note: ​SIGTSTP is a signal completely different than ​SIGSTOP​, which also suspends a process
but is sent programmatically (e.g. ​kill -STOP pid​) and CANNOT be ignored.

3.1.2 Installing Handlers
After writing the signal handlers, you must install them. This is normally done with the
sigaction()​ ​function, which has the following signature and is discussed in more detail in
section 2.1 above:

int sigaction(int signum, const struct sigaction *act, struct sigaction

*oldact);

In this lab, you will implement the following function to simplify the process of installing a
handler:

int install_handler(int signum, void (*handler)(int))

This function takes a signal number and a pointer to a signal handler function and should install
the handler for that signal, returning 0 on success and -1 on failure. It should set up a ​struct

4

CSCI 0330 Intro Computer Systems Doeppner

sigaction ​and use the ​sigaction() ​function to install the given handler. Hint: You can use
NULL​ for the third argument, ​oldact​.

3.1.3 Additional Functionality
In addition to handle signals, the program should read input from stdin and echo it to stdout in a
REPL. This should be done in an asynchronous-signal-safe way, using the ​read() and
write() ​syscalls. The program should terminate on ​EOF (when ​read returns 0). This
functionality will be implemented in the ​read_and_echo() ​function, which returns an int
indicating success or failure when done. This function should not return if the program receives
a signal during a call to ​read()​ or ​write() ​(see 2.3 above).

3.1.4 Expected Functionality for Part 1
Once you’ve successfully installed and implemented signal handlers for the three signals, and
implemented your REPL in ​read_and_echo()​, ​your program should do the following: It should
read lines of input from the user and echo them back indefinitely. The signals ​SIGINT​, ​SIGTSTP​,
and ​SIGQUIT​ should not terminate or suspend the program - they should cause the message
you wrote in the appropriate signal handler to be printed out and the program should continue.

This stage of the lab will produce a program that is difficult to terminate. You can kill the process
from another terminal on the same machine using the command

pkill -SIGKILL siglab

This will send the uncatchable ​SIGKILL​ signal to all processes named​ “siglab”,​ terminating
them immediately.

3.2 Part 2: Sending and Responding to Signals
Once you have signal handlers installed, you can no longer easily terminate or stop your
program from the terminal. Now, your job is to implement a “weakness” in the impenetrable wall
of signal handlement. Specifically, you will modify siglab to terminate upon receipt of a particular
sequence of signals, ​SIGINT SIGTSTP SIGQUIT​, delivered within an appropriate timespan. If
any other sequence of signals is sent, your program should not react. You’ll also be writing
another short program, ​knocker (whose source is in ​knocker.c​), to send this signal sequence.
We refer to this process as “signal knocking”, as it resembles the process of “port knocking”
which is used to control access to protected ports on a firewall.

3.2.1 Implementing Signal Knocking
Modify your signal handlers so that ​siglab terminates when the correct sequence of signals is
received in the span of one or two seconds. You will probably want to use global variables for
this.

You can use the ​time()​ ​function to get a count of the number of seconds since January 1,

5

CSCI 0330 Intro Computer Systems Doeppner

1970. This can be used to determine whether there has been too much of a delay between
signals.

3.2.2 A Simple “Signal Knocker”
Your signal knocker will take two arguments: an integer representing the PID (process ID) of the
process to send the signal to, and a string of characters indicating the sequence of signals to be
sent. In the second argument, the character ​‘c’ ​indicates a ​SIGINT​, ​‘z’ a ​SIGTSTP and ​‘q’ ​a
SIGQUIT​. For example, the following should terminate your siglab program:

./knocker <PID> czq

3.2.3 Sending a Signal
To send a signal to another process in C, you can use the ​kill()​ system call, which has the
signature:

int kill(pid_t pid, int sig);

This function sends signal ​sig ​to process ​pid.​ Use this function to send the correct sequence
of signals to terminate your signal-handling program.

3.2.4 Getting the PID of a Process
In order to send a signal to a process, you need that process’s PID. When using the ​kill
command in a terminal, it’s simple enough to obtain the PID for a given process — ​pgrep -l

<program name> will print out a list of all processes whose names contain a match of the
regular expression ​<program name>​, and the corresponding PIDs. For instance, ​pgrep -l

foo​ ​prints all current processes whose names contain the string ​“foo”​.

A C program can access the current process’s PID with the system call ​getpid()​, which
returns the process’s PID as an integer of type ​pid_t​. We recommend adding a line at the
beginning of your signal-handling program to print out its PID, making it easier to set up your
signal knocker.

4 Getting Checked Off
Before handing in your lab, be sure to run this script to reformat your code to be consistent with
the style guidelines:

cs0330_reformat siglab.c

Once you’ve finished both parts of the lab, both you and your partner must run the lab checkoff
script:

6

CSCI 0330 Intro Computer Systems Doeppner

33lab_checkoff lab07

Remember to read the course missive for information about course requirements and policies
regarding labs and assignments.

7

