

CSCI0330 Intro Computer Systems Doeppner

Lab 05 - Profiling
Due: October 17, 2019 at 10:00 PM

1 Introduction 1

2 Assignment 1
2.1 Handout 2
2.2 Optimizations 3

3 Profiling With google-pprof 3

4 Reading the Callgraph 3

5 Reading Text Output 5

6 Using google-pprof In Your Own Projects 5

7 Measuring Performance with time 6

8 Getting Checked Off 6

1 Introduction
The Honeyhead Damsel is the most sofishticated of all the C-Creatures. She is currently
betrothed to the Convict Surgeonfish. However, Slender Filefish wants Honeyhead for himself.
Seizing his oppor-tuna-ty, he decides to sardine the Convict Surgeonfish behind the bars of an
anemone. A certain fishgram that will unlock the anemone and free him. However, he must
escape before Slender runs away with Honeyhead. Floundering, he needs a solution FAST.

Note: All of the labs in CS33 will be partner labs. Remember to fill out the partner form--you
must work with a different partner for each lab and can either choose your partner or go
random.

http://cs.brown.edu/~twd/twdUnderwater/index.html#/view/ID828521
http://cs.brown.edu/~twd/twdUnderwater/index.html#/view/ID827785
http://cs.brown.edu/~twd/twdUnderwater/index.html#/view/ID828121

CSCI0330 Lab 05 - Profiling Doeppner

2 Assignment
In this lab assignment you will accomplish two things:

1. Learn to use a profiler, google-pprof, to see where time is spent during the execution
of a program.

2. Implement some mid-level program optimizations to improve the performance of a
provided executable program.

You are provided a program, words, which processes the contents of a file into a hashtable of
the number of bigrams . In this lab, you will use google-pprof to determine where the 1

performance of this program can be improved, and then make those improvements. The
Makefile that you are given builds the words executable as well as another executable
words_avg, which executes the routines of words 10 times, printing no output.

Use the words program by executing the following command in a terminal:

 ./words <filename>

This command will cause words to compute bigram counts over each word in the file indicated
by filename. words prints these counts to stdout, but you can redirect the output to a file
instead by using

 ./words <filename> > <output_file>

2.1 Handout
Run the terminal command

 cs0330_install lab05

to install the files for this lab to your home directory.
The lab handout contains the following files:

● ttable.h: Header file for the hashtable implementation.
● ttable.c: Implementation of the hashtable.
● words.h: Header file for the bigram-count code.
● words.c: Implementation of the bigram-count code.
● file_io.h: Header file for code that reads the contents of a file into a character array.
● file_io.c: Implementation of code that reads file contents into a character array.
● main.c: Runs the bigram-counting code and prints its output to stdout.

1 A bigram is a sequence of two adjacent words

CSCI0330 Lab 05 - Profiling Doeppner

● main_avg.c: Runs the bigram-counting code 10 times.
● words_base: The initial version of the words executable.
● words_base_avg: The initial version of the words_avg executable.
● words_fast: An optimized version of the words executable.
● words_fast_avg: An optimized version of the words_avg executable.
● Makefile: A makefile.
● plays.txt: A test input file, containing the entire works of Shakespeare.

2.2 Optimizations
There are two main optimizations that you are expected to make in this lab. Each of these
pertains to code contained within the words.c file. We strongly suggest that you also look over
words.h and main.c. Feel free to examine the other C files, although doing so will not help with
finding the optimizations in words.c.

Hint: take a look at how many times each character in the file is being iterated over.
Hint 2: If you find yourself stuck, take a step back and think about what your strategy would be
for efficiently reading in bigrams. Take special note of memory usage!

3 Profiling With google-pprof
After using make to create the executable words, you will be able to begin profiling. To get a
profile, run your program with the terminal command

 CPUPROFILE=<profile_file> ./words plays.txt > plays.out

where <profile_file> is a file location of your choosing. The contents of this file will be completely
overwritten with profiling information of the execution of words, or a new file will be created if it
does not already exist.

Once you have run the above and generated profile information, run the following command to
generate a callgraph

 google-pprof --pdf ./words <profile_file> > callgraph.pdf

This command will create a callgraph, i.e. a visual representation of the information contained
within the profile file. Providing google-pprof the --pdf option instructs it to generate output in
the \filename{pdf} file format - you can view the resulting graph in any PDF viewer such as
evince or okular.

CSCI0330 Lab 05 - Profiling Doeppner

4 Reading the Callgraph
A callgraph generated by google-pprof uses a graph to measure time spent in each part of
your program. Functions are represented by boxes, which are sized according to their weight in
the process (the amount of time spent within that function). A larger box will correspond to more
time spent in a function. Edges between boxes are labeled with the number of samples that
went between the two functions.

CSCI0330 Lab 05 - Profiling Doeppner

Above is the callgraph for the words program before any optimizations are made. We can see
that the program has spent a lot of time in __tsearch and maybe_split_for_insert. We can
figure out some basic statistics about those functions from the callgraph.

google-pprof figures out how much time is spent in each function by taking snapshots, or
samples, of the current call stack at certain points over the course of the execution of the
program. This provides a kind of Monte Carlo estimation for what functions are the most
expensive; functions which take up more time in the execution are highly likely to have more
samples taken when they are running. The numbers in each box are related to the number of
samples each function was executing in.

First, we can see that maybe_split_for_insert is a leaf function, in that it doesn't call any
other functions. Thus, any time spent in the function will be executing that function's body.
Because of this, the box for maybe_split_for_insert only has one number related to it: in this
case, 29. This means that pprof took 29 samples while that function was executing.
Additionally, this accounts for 25.0% of all samples taken.

__tsearch is a little more intricate, and has two numbers associated with it. We can see that
there isn't just one sample number, but instead it is in terms of ``X of Y". Because __tsearch
calls other functions, pprof split out the number of samples where code from __tsearch was
executing (13, which is the X), versus the number of samples in functions called by __tsearch,
including __tsearch itself (76, which is the Y). Thus, while a significant fraction of the program
is spent running code that __tsearch is responsible for, only some of that time is spent within
__tsearch directly.

Finally, there is an edge from __tsearch to maybe_split_for_insert. This means that
maybe_split_for_insert is called by __tsearch. The edge is also annotated with the number
29, meaning that 29 samples were taken where __tsearch called maybe_split_for_insert.
In this way, the whole call graph can be presented at once, in a relatively straightforward
manner.

If no sample enters or begins in a function, that function will not appear in the callgraph. pprof
may also filter out functions which it considers to be inconsequential, usually because they are
not called very often.

The callgraph above contains a lot of information, but not all of that information is relevant to
your interests in this lab, or what you can do to improve the program. Fortunately,
google-pprof has options to ignore functions that you are not interested in:

 google-pprof --pdf --ignore=<regexp> <program> <profile_file>

 callgraph.pdf

CSCI0330 Lab 05 - Profiling Doeppner

The --ignore=<regexp> option filters out all functions matching <regexp> from the callgraph.
For this lab, the regular expression ‘ttable’ will eliminate information that you don't need - run

 google-pprof --pdf --ignore='ttable' ./words <profile_file> >

callgraph.pdf

Doing this gives a new graph with only the most pertinent information:

CSCI0330 Lab 05 - Profiling Doeppner

5 Reading Text Output
To get instant feedback about how quickly words is running, instead of creating a callgraph
each time, just generate some text mode statistics with the following command:

 google-pprof --text ./words <profile_file>

This will return for you the following information in columns : 2

1. Number of profiling samples in this function
2. Percentage of profiling samples in this function
3. Percentage of profiling samples in the functions printed so far
4. Number of profiling samples in this function and its callees
5. Percentage of profiling samples in this function and its callees
6. Function name

6 Using google-pprof In Your Own Projects
google-pprof is a tool that you will likely find helpful on future projects both in and out of this
course. Fortunately, it is quite simple to integrate it with a project: all you have to do is add the
-lprofiler flag when you compile your project. In projects for this course you can do this by
adding this option to the CFLAGS variable in the provided Makefile.

Programs compiled with -lprofiler will take samples of the CPU time and save information in
the file indicated by the CPUPROFILE environment variable. Be sure to set this variable every
time you want to profile your program.

7 Measuring Performance with time
time is a command that measures how long it takes for another program to run. You can use it
in this lab to measure the performance of your words_avg program against words_base_avg
and words_fast_avg to see how you're doing.

time is used as follows:

 time <program> <arg1> <arg2> ... <argn>

For example, to time your words_avg program, you would run

2 http://google-perftools.googlecode.com/svn/trunk/doc/cpuprofile.html

http://google-perftools.googlecode.com/svn/trunk/doc/cpuprofile.html

CSCI0330 Lab 05 - Profiling Doeppner

 time ./words_avg plays.txt

During the lab, we recommend using time to measure the performances of words_avg,
words_base_avg, and words_fast_avg instead of the executables that run only once. The code
of words performs a lot of input and output operations, which dilutes the time contribution of the
bigram-counting code. The avg executables perform these input and output operations only
once, and then process the input ten times, so that more of the time spent executing them is
spent executing the code that you are trying to optimize.

time lists the real time, time spent in user mode, and time spent in system mode. Real time is
the time from start to finish of your program, and is what you should use to measure the
performance of your program. User and system time are related to operating systems concepts
which will be covered later in the course.

8 Getting Checked Off
Once you have improved the performance of words to be near (specifically the time it takes
words_avg to run should be within 10% of words_fast_avg) that of the provided faster version,
submit your work using the handin script:

 33lab_checkoff lab05 [--verbose]

Both you and your partner must run the script individually. This may take some time to run
(~20-30s), so don't worry if it hangs. It will test for both correctness of output and performance
(your code should be within 10% of the fast version). If the python3
/course/cs0330/static/lab_tests/lab05/prof_compare.py test fails, this is because your
bigram did not match the expected bigram.
If the python3 /course/cs0330/static/lab_tests/time_checker.py test fails, this is
because your code was not fast enough. Run with the --verbose flag for more detailed output.

For this lab, as well as all other labs, the checkoff script only needs to successfully pass once.
Once it has passed, all following attempts will be discarded. You may notice that certain
machines run slower than others. You can see who else is using your machine with the who
command. If your machine is particularly busy, it might impact the speed with which your
solution terminates. You might find that your solution passes the checkoff script without having
implemented all the suggested optimizations. Although you won’t gain extra credit for including
additional optimizations after getting checked off, we still recommend that you try to implement
all of them, as these concepts are important for you to understand and will appear on future
assignments.

CSCI0330 Lab 05 - Profiling Doeppner

Remember to read the course missive for information about course requirements and policies
regarding labs and assignments.

