

CSCI0330 Intro Computer Systems Doeppner

Lab 01 - Life
Due: Sunday, September 15, 2019 at 10:00 PM

1 Introduction 1
1.1 The Game of Life 2

1.1.1 Example 3

2 Assignment 4
2.1 Installing the Stencil 4
2.2 Storing the Game Board in a One-Dimensional Array 4
2.3 Filling in the Stencil 5
2.4 Compiling and Running Your Code 6
2.5 Testing 7

3 gdb 7
3.1 Backtrace 8
3.2 Setting a Breakpoint 8
3.3 Stepping and Continuing 9
3.4 Printing 9

4 Getting Checked Off 10

1 Introduction

The purpose of this lab is to give you some experience with the syntax and basic features of the
C programming language.

In this lab, you will be programming Conway’s Game of Life. The Game of Life, created in 1970
by British mathematician J. H. Conway, simulates a population of lifeforms (or organisms) over a
sequence of generations. The simulation takes place on a two-dimensional grid; you will store
this data in a one-dimensional array configured in row-major order, so this lab will afford you
practice with arrays in C. A description of the Game of Life with an example can be found below.

Since for many of you this is your first time programming in C, we have done the design work for
you, providing function prototypes, each of the function skeletons, and ample comments to help
you. All of the concepts needed for this lab are covered in the ​C Primer document​, which can be
found on the course website. You may wish to refer to it throughout the lab.

1

http://cs.brown.edu/courses/cs033/docs/guides/cprimer.pdf

CSCI0330 Intro Computer Systems Doeppner

Note:​ For this lab, having a partner is ​optional​. We encourage you to collaborate with other
students within our collaboration policy! For all future labs, you will be required to indicate your
partner on a form that we will send out, and you will not be able to have the same partner for
more than once.

1.1 The Game of Life

As stated above, Conway’s Game of Life takes place on a two-dimensional grid of cells. Each
cell can be inhabited by at most one organism. The game starts off with an arbitrary initial
population (dictated by whether a particular cell contains an organism or not). Occupied cells
are referred to as “alive,” whereas unoccupied cells are “dead.”

From this initial population the next generation of organisms is obtained by applying the
following rules:

● The neighbors of a cell are the 8 cells that immediately surround it vertically, horizontally
and diagonally.

● If a cell is alive and has 2 or 3 live neighbors, it will remain alive in the next generation. •
If a cell is alive and has fewer than 2 live neighbors, it will die of loneliness.

● If a cell is alive and has 4 or more live neighbors, it will die of overcrowding
● If a cell is dead and has exactly 3 live neighbors, a new organism will be born in that cell.

Otherwise, it remains dead in the next generation.
● All births and deaths take place at exactly the same time, so that all the cells’ neighbors

are counted simultaneously (based on the current generation) before the next generation
is produced. It is possible for a new cell to be born based on counting a neighbor in the
current generation that will be dead in the next generation.

The rules for “Life” assume an infinite grid in all directions. Since we are limited to a finite-size
grid, it is unclear how to count neighbors of cells that are on the grid borders, which do not have
all eight neighbors. Thus, for this lab, we shall assume that any neighbor that does not exist in
the grid is a dead cell.

You can find a Life simulator at ​http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/​.
You may wish to use this to ensure that you understand the rules and to determine whether or not
your implementation is working correctly.

2

CSCI0330 Intro Computer Systems Doeppner

1.1.1 Example
Let’s look at a ​5x4​ grid (where a cell with a dot is alive and all other cells are dead):

 • • •

Initial Population

Here we have three cells that are alive. For each cell we will first count how many of its
neighbors are alive. The upper-left cell is not adjacent to any living cells, so its neighbor count is
zero. The same goes for all the cells along the top and bottom rows. Moving to the left-most cell
of the second row, we see it has exactly one living neighbor, the one diagonally to the lower
right. Going through the entire grid this way will result in the following count of living neighbors
for each cell.

0 0 0 0

1 2 3 2

1 1 2 1

1 2 3 2

0 0 0 0

Neighbor Count

We now combine the neighbor count with the information of whether it was alive or dead to
generate the new population. The second cell of the second row has a neighbor count of two. If
it had been alive, it would have stayed alive according to the rules outlined. However, since it
was dead it will stay dead in the next generation. The third cell of the third row also has a
neighbor count of two, but because it was alive it stays alive. Just above this cell is an example
of a dead cell coming alive since it has three living neighbors. The next generation will look like
the following:

3

CSCI0330 Intro Computer Systems Doeppner

 •

 •

 •

Next Generation

2 Assignment

You will be filling in the provided stencil file, life.c, using the C programming language. You must
complete each of the provided functions and should not add any additional ones. Each of your
functions should have the behavior specified in the explanatory comments, making any and all
function calls listed in the comments.

2.1 Installing the Stencil

To get started, run the following command in a terminal:

 cs0330_install lab01

This will install the stencil code (and a copy of this handout) in your ​∼/course/cs0330/lab01/
directory.

2.2 Storing the Game Board in a One-Dimensional Array

In other languages, such as Java, it is fairly straightforward to use a 2D array to store structures
like the two-dimensional grid used by the Game of Life. However, 2D arrays in C are somewhat
more complex; to simplify things, you should store the game board in a one-dimensional array
configured in row-major order. You will be using 2D arrays in the upcoming Maze assignment!

The ​get_index()​ function that you will fill in allows you to calculate an index value for a given
row and column; using this index, you can access the value in your 1D array that corresponds to
the value at the given row and column of the board.

4

CSCI0330 Intro Computer Systems Doeppner

2.3 Filling in the Stencil

There are ten functions for you to fill in within the stencil code. More comprehensive comments
for each function have been provided there, but you will find below a brief explanation of each of
these functions.

● do_life(int rows, int cols, int array[rows * cols], int steps)​ - This
function will execute the Life algorithm for a number of iterations. By default, the number
of iterations is set to 10. Initially, ​do_life() ​will need to create a second array of the
same dimension as the initial state array. Since the generation updates for each cell are
based on the previous generation, you cannot make any changes to the previous
generation until the new generation has been completely calculated, meaning you will
need two arrays rather than one. These arrays will be passed around to the various
functions in the Life program. ​do_life()​ must print each generation of the game board
and should call ​update()​ to get the next generation of the game board.

● get_index(int row, int col, int num_cols)​ - This function will retrieve the index
of the 1D array that corresponds to a given row and column number, assuming
zero-based indexing.

● update(int rows, int cols, int old_array[rows * cols],

 int new_array[rows * cols])​ - This function should perform one iteration of
the Life algorithm. For each cell, it should determine what the state in the next
generation will be and set that cell’s state in the next generation array. Note that this
approach does not generate the entire neighbor count array before generating the next
population. Instead, the approach calculates a cell’s next generation value just after
counting its number of neighbors.

● get_next_state(int rows, int cols, int array[rows * cols], int row,

● int col)​ - This function will determine the next state of a single cell
according to the rules of Life specified above. It should also use the function
is_in_range()​ to ensure that a valid row and column have been input, terminating the
program if the input is invalid.

● is_in_range(int rows, int cols, int row, int col)​ - This function should
determine if the provided row and column are on the game board, assuming zero-based
indexing.

● count_alive_neighbors(int rows, int cols, int array[rows * cols],

 int row, int col)​ - This function should return the
number of alive neighbors that a cell has by adding the results of ​is_alive()​ together
for all 8 neighboring cells. It should terminate the program if the input is invalid.

● is_alive(int rows, int cols, int array[rows * cols], int row, int col)​ -
This function should return 1 if the cell at the given row and column is alive and 0 if it is
dead. Moreover, it should return 0 if the input is out of range. This means that calling

5

CSCI0330 Intro Computer Systems Doeppner

is_alive()​ on a cell with a row and column of -1 is valid. You will find that this will
simplify your implementation of ​count_alive_neighbors()​.

● set_alive(int rows, int cols, int array[rows * cols], int row, int col)
- This function should set the specified cell to be alive in the provided array, terminating
the program if the input is invalid.

● set_dead(int rows, int cols, int array[rows * cols], int row, int col)​ -
This function should set the specified cell to be dead in the provided array, terminating
the program if the input is invalid.

● print_array(int rows, int cols, int array[rows * cols])​ - This function
should print out a visual representation of the board.

2.4 Compiling and Running Your Code

To compile your code, you should cd into the directory with your code and run

make

from the command line. This will execute a script (called a Makefile) that compiles and builds
your program using the ​gcc​ compiler. If there are errors in your code, the compiler (​gcc​) will let
you know so you can fix them.

Once your code is error-free, ​gcc​ will create a binary executable file for you to run. You can run
this executable by running the command

./life <board_file> <num_rows> <num_cols>

Here you may assume that the input ​num_rows​ and ​num_cols​ are the correct number of rows
and columns in ​board_file​. You will need to recompile this binary any time you make changes
to your code.

If you would like to clean up your working directory after running your program, run

make clean

from the command line.

6

CSCI0330 Intro Computer Systems Doeppner

2.5 Testing

As you write your code, pepper it with ​assert()​ statements, asserting something about the
program state for each function. ​assert()​ tests a condition (which is provided as its only
argument), doing nothing if the condition was true, and aborts the program if the condition was
false, printing the assertion that failed with its line number. To use ​assert()​, you’ll need to
include the header file ​<assert.h>​.

Note that ​assert()​ statements are generally used for programmer errors, and will terminate
your program immediately if it fails. In almost all future assignments you will be asked to perform
other types of error-checking (for example, whether the user inputs are valid) where ​assert()
statements may not be appropriate. We will cover what to do in those cases in the Maze
assignment.

To test your program, you are provided with a test case in the lab stencil, sample board.txt that
contains a grid of cells with dimension ​9x7​. To do this, run the two commands below:

./life sample_board.txt 9 7 > my_output.txt

diff -ZB my_output.txt sample_out.txt

>​ redirects the output of the program to the file ​my_output.txt​.
diff​ prints the differences between the output of your program and the correct output in
sample_out.txt​. For more info on ​diff​, type ​man diff​ on your terminal console. Here, we are
using the following flags:

● -Z​: ignores trailing whitespace at the end of each line
● -B​: ignores completely blank lines

If your program is correct, ​diff -ZB my_output.txt sample_out.txt​ should not output
anything. If you cannot track down your issue or you are getting segmentation faults, check out
the following section on GDB to learn how to track down your bugs

3 gdb

gdb​ is a debugger that you can use to step through your C programs and ensure that your code
is behaving as you expect it to. The main tasks that ​gdb​ performs include:

● Starting your program

● Making your program stop when certain conditions are true

7

CSCI0330 Intro Computer Systems Doeppner

● Examining what has happened when your program has stopped

● Changing things in your program so you can experiment with correcting the effects of
one bug and continue your program

This document will cover the first three of those tasks.

gdb​ is best run on an executable file that was compiled using the -​g​ flag, which provides
debugging symbols so that gdb can refer to variables by name and reference lines of source
code. The syntax for running ​gdb​ on the executable ​hello​ is

gdb hello

This will start ​gdb​ and permit you to run ​gdb​ commands. The debugger is terminated with the
gdb​ command ​quit​.

Below is an explanation of several tasks you can perform with ​gdb​ that may be helpful in
debugging.

3.1 Backtrace

Backtrace in ​gdb​ allows you to see the sequence of function calls that occurred up to this point.

This is useful to run after your program has segfaulted in GDB so you know where to begin
looking. In addition to running after a program has crashed it can also be run when you are
waiting at a breakpoint (see next section). Inside of gdb it can be run using:

backtrace

Or with the following shorthand:

bt

3.2 Setting a Breakpoint
A breakpoint is a place in your code where you want the execution of your program to pause.

To set a breakpoint in your program at the start of a function, use the ​gdb​ command ​break
[file:]function​. For example, if you wish to create a breakpoint at the start of the function
bar()​ in the file ​foo.c​, you would use one of the following commands:

break foo.c:bar

break bar

8

CSCI0330 Intro Computer Systems Doeppner

To set a breakpoint at line 6 of ​hello.c​, you can use one of the following commands:

break hello.c:6

break 6

A breakpoint can be deleted by running ​clear​ in the place of ​break​, or ​delete <num>​ on the
breakpoint given by ​num​.

Running ​info break​ will print a list of all the currently-set breakpoints.

3.3 Stepping and Continuing
Once your code has stopped (but not terminated), you have several options how to proceed.

● next​ will execute the next line of code, including the entirety of any functions called in
that line.

● step​ will execute the next line of code, stepping into and stopping at the first line of any
function that line may call.

● continue​ will resume execution of your code until the next breakpoint or the termination
of the program.

● finish​ will resume execution of your code until the next breakpoint or the current
function returns; if it is the latter, this command also prints the function's return value (if
any).

To repeat the previous command, you can just send a blank line and gdb will execute the
last-executed command. This is very useful if you want to quickly step through your program.

3.4 Printing
You may print any variable from gdb using ​print​. For instance, if we had an ​int​ variable ​x​ with
a value of 33, we could print it this way:

print x

>>> $1 = 33

GDB knows the type of variables in the program and will thus represent them correctly. Note
that ​char*​ variables will be printed as null-terminated strings! You can also use other C syntax,
such as indexing into an array:

print int_arr[3]

>>> $1 = 90

9

CSCI0330 Intro Computer Systems Doeppner

4 Getting Checked Off

Once you’ve completed the lab, run ​33lab_checkoff lab01​. If you have a partner, you and
your partner both have to run the script individually.

Remember to read the course syllabus and website for information about course requirements
and policies regarding labs and assignments.

10

