

CSCI0330 Intro Computer Systems Doeppner

Lab 11 - Concurrency 1
Due: December 11, 2019 at 06:00 PM

1 Introduction 1

2 Fractals 1
2.1 Assignment 2

3 Concurrent Linked List 3
3.1 Assignment 3
3.2 Implementation Details 4
3.3 Tips: Using pthreads 4
3.4 Testing 5
3.5 Debugging 5

4 Getting Checked Off 6

1 Introduction
In this lab, you will be creating concurrent programs using threads. There are two parts to this
assignment. The fractals directory will be used for the first section. The linkedlist directory will be
used for the second part of the lab.

Note: All of the labs in CS33 will be partner labs. Remember to fill out the partner form--you
must work with a different partner for each lab and can either choose your partner or go
random.

Install the stencil code for the lab by running

 cs0330_install lab11

2 Fractals
The first part of this assignment is to repeat the fractals part of the virtual memory lab, but by
using threads rather than fork() and mmap().

Using mmap() is a valid way to share memory between different units of execution, but using it
in this way requires some overhead. For example, any data generated outside the mapped
region must be copied into the region. There is also additional overhead from the operating
system in providing each child process with its own memory space.

CSCI0330 Lab 11 - Concurrency 1 November 25, 2019

This can be solved with threads. A thread is similar to a process in that it provides a unique line
of execution; a thread is unlike a process in that it shares its address space and file descriptor
table with its parent process. This greatly reduces overhead in creating and managing threads,
making them an invaluable part of concurrent programming.

The library you will be using for all of your threaded programming needs is the POSIX thread
library, pthread.h.

There are two functions of primary concern:

● pthread_create(pthread_t *thread, const pthread_attr_t *attr, void

*(*start_routine) (void *), void *arg)

This creates and executes a new thread, storing that thread in the argument thread.

● pthread_join(pthread_t thread, void **retval)

This waits for the given thread to finish and saves its return value in retval.

For pthread_create(), attr determines the attributes of this new thread; if NULL is passed for
attr, the created thread is given the default thread attributes, which are sufficient for this lab.

start_routine is a pointer to the function which the new thread will execute; arg is the
argument to that function. pthread_create() returns 0 if it is successful and an
error number otherwise.

The signature of start_routine, however, presents a problem: generate_fractal_region()
requires several arguments, but pthread_create() only takes a single argument as a
parameter. To work around this, you must define a struct which wraps each of the arguments
to generate_fractal_region() into a single argument.

Within fractal_threaded.c is the function definition gen_fractal_region(), which has the
signature required by start_routine; edit this function so that it unpacks its argument struct
and calls generate_fractal_region().

2.1 Assignment
Using threads, edit fractal_threaded.c so that work done to generate the fractal is divided
amongst several threads. This functionality should be abstracted to an arbitrary number of
threads; as with fractal_forked.c, the workers variable declared at the top of main() determines
this value. You can also specify this value as an argument with the flag -n <workers> or
--workers <workers>.

CSCI0330 Lab 11 - Concurrency 1 November 25, 2019

You need not handle the case where the height of the generated image is not divisible by the
number of threads.

You can build the fractal program with the command make fractal_threaded, which includes
fractal_threaded.c instead of fractal.c.

3 Concurrent Linked List
Running programs with multiple threads can serve two different purposes:

● performance: Using multiple threads can increase performance in a program by allowing
other threads to run while one thread sleeps, which is often the case with programs that
have to access the network or disk. On a computer with multiple processors, using
multiple threads can help take advantage of that.

● abstraction: Using multiple threads in a program can also serve as a convenient
abstraction. For example, a server that has to deal with multiple clients may want to have
a different thread for each client. This way, each thread can operate independently,
dealing with only one client at a time.

The issue with multithreaded programs, though, is that any data structures that are shared
between the threads must be modified carefully, since each thread could be modifying the same
element at the same time. As discussed in class, mutual exclusion is one way of solving this. In
this assignment, we have provided a simple implementation of a linked list, along with a
program that launches a number of threads that modify this list concurrently. The linked list
implementation currently has no measures to provide thread-safety. Your task is to modify this
code in order to make it safe for multithreading.

Two general approaches to making data structures thread-safe with mutual exclusion are
coarse-grained locking and fine-grained locking. Coarse-grained locking involves locking the
entire data structure with one lock, so that only one thread can access the data structure at any
time. Fine-grained locking involves locking each component of the data structure separately.
This approach allows multiple threads to access the data structure at the same time. In this lab,
you will be implementing fine-grained locking, since implementing coarse-grained locking is
fairly trivial in this case.

3.1 Assignment
In this part of the assignment, you will be creating a concurrent sorted linked list. There is an
implementation of a sorted linked list in linkedlist.c, and you will be modifying this code to be
thread-safe.

CSCI0330 Lab 11 - Concurrency 1 November 25, 2019

You will need to modify the list_ele_t struct to make the elements of your linked list thread-safe.
In the stencil, the list_ele_t gives every element a value and a pointer to the next element in the
list. Consider what you might add to the struct definition to be able to implement fine-grained
locking! (Note: if you change the struct definition, you will also need to change the initialization
of each element)

The functions in this file are:

● main(): Takes care of reading command line input and launching threads.

● randomListManip(): Randomly inserts or removes values from the linked list. The
method's signature reflects the fact that it is being used in pthread_create to launch a
new thread. The given Makefile generates a binary called random that uses this method.

● seqListManip(): Inserts values into the linked list. Running this method in multiple

threads concurrently makes the effects of unsafe multithreaded programming quite
apparent. Since each thread only adds elements to the list and never removes elements,
we can calculate the number of elements that should be in the list at the end of the
program. The method's signature reflects the fact that it is being used in
pthread_create to launch a new thread. The given Makefile generates a binary called
sequential that uses this method. Note that when you run this binary, there is some
overlap between the values the threads add to the list. Thus, 10 threads running 10
iterations will add 55 distinct values to the list (values 0 through 54), not 100 distinct
values.

● search(): Searches through the linked list for a node with the given value.

● insertList(): Inserts an element into the linked list if it is not already in the linked list.

● deleteList(): Deletes an element from the linked list if it exists in the linked list.

Running make using the provided Makefile creates two binaries: sequential and random. The
former binary gives the seqListManip function as an argument to pthread_create(), and the
latter does the same with randomListManip() instead. However, there is only one source file
you will have to modify: linkedlist.c. The different binaries are generated by the macro
surrounding the line that makes calls to pthread_create(), which simply swaps which function
is being given to the new threads to run.

3.2 Implementation Details
Since you are implementing fine-grained locking, you will have to modify the search(),
insertList(), and deleteList() functions, as well as the definition of the list node struct.
You should not modify seqListManip() or randomListManip(). You will want to lock each

CSCI0330 Lab 11 - Concurrency 1 November 25, 2019

node in the linked list separately, so that only one thread at a time can access the fields of any
node in the linked list.

3.3 Tips: Using pthreads
You will probably want to use or learn more about the following pthread library functions in your
implementation. Use the man command to find out more about them.

● pthread
○ pthread_create()
○ pthread_join()
○ pthread_exit()

● pthread_mutex
○ pthread_mutex_init()
○ pthread_mutex_destroy()
○ pthread_mutex_lock()
○ pthread_mutex_unlock()

● pthread_barrier
○ pthread_barrier_init()
○ pthread_barrier_wait()

In addition to that, it may be useful to look up the use of PTHREAD_MUTEX_INITIALIZER to
statically initialize a mutex.

3.4 Testing
Start testing your program by using the sequential binary. This is a simple case where each
thread adds a sequence of numbers to the list, though the sequences for each thread overlap.
When running this on the stencil code (which is not thread-safe), the resulting linked list varies
in size each time the program is run. You can get a count of the number of elements in the list at
the end by running ./sequential <nthreads> <niterations> 2>/dev/null | wc -l. Since this
implementation is unsafe, some duplicates arise in the list, leading to lists that are larger than
they should be in a thread-safe implementation.

As soon as you are sure that your program works with this simpler binary, move on to the
random binary.

The program in the random binary adds and removes elements at random from the list, and will
be a better test of whether your locking is valid. Do note that since the sequential binary is
deterministic, it will not test your code fully, and you should move on to using the random binary
before getting checked off.

CSCI0330 Lab 11 - Concurrency 1 November 25, 2019

3.5 Debugging
Concurrent programming occasionally leads to a common class of bugs called deadlocks. To
solve deadlocks, it is often helpful to look at the state of threads while they are stuck to identify
what they are waiting for. gdb offers a set of helpful debugging tools for multithreaded programs
that allows just that. To start gdb with your program, type

 gdb ./random

Once gdb is started up, use the run command followed by the program arguments to run your
code.

While your program is running, it is possible to interrupt and pause it so you may inspect the
state of each thread. You may interrupt gdb using CTRL-Z.

From here, you may print a list of threads by typing info threads. This command enumerates
the threads. You will see a * next to the current thread you are inspecting. To inspect a different
thread, type thread NUMBER where NUMBER corresponds to the numbers in the list you printed.

You will find it is most helpful to print a backtrace with the bt command. This will print the
functions the current thread is executing.

If you want to run a command for all threads, you can run thread apply all <command>; for
example, to print a stack trace of every thread, run thread apply all bt.

Use this information to discern where any deadlocks are coming from and how to fix your code.

4 Getting Checked Off
Once you've completed both sections of the lab, both you and your partner must run
33lab_checkoff lab11 individually. You may run this command as many times as you want;
we will use the most recent grade and handin time recorded by this program.

