Expectation, Continued

Another way to write the expectation of a random variable X is
\[E[X] = \sum_{k \in \mathbb{R}} k \cdot p(X = k). \]
(Proven.)

Variance

Definition: The variance of a random variable X, denoted $V[X]$, is the expected value of the square difference of X and the expectation of X, i.e.
\[V[X] = E[(X - E[X])^2] = \sum_{\omega \in S} (X(\omega) - E[X])^2 p(\omega). \]

Definition: The standard deviation of a random variable X is the square root of the variance of X.

Proposition: The expected value of a constant c is
\[E[c] = c. \]
(Proven.)

Proposition: For a random variable X, we have
\[V[X] = E[X^2] - E[X]^2. \]
(Proven.)

Definition: Two random variable X and Y are independent if
\[p(X = i, Y = j) = p(X = i)p(Y = j) \]
for all $i, j \in \mathbb{R}$. (Not covered in class.)

Proposition: Suppose we have independent random variables X and Y. Then
\[E[XY] = E[X]E[Y]. \]
(Not covered in class.)

Proposition: Suppose we have n independent random variables X_1, \ldots, X_n, then
\[V[X_1 + X_2 + \ldots + X_n] = V[X_1] + V[X_2] + \ldots + V[X_n]. \]
(Not proven.)