Induction

\[P(n) \ \forall n \geq b, n \in \mathbb{Z} \]

- Base Case: \(p(b) \)
- Inductive step: \(p(k) \implies p(k + 1) \)

Ex 1 \(p(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \)

Proof. Base Case: \(p(1) \)
\[1 = \frac{1(1+1)}{2} \]

Inductive step: Assume \(p(k) \) is true for a fixed but arbitrary value \(k \)

Claim: Want to show \(p(k + 1) \) is true

Proof.
\[p(k + 1) : 1 + 2 + 3 + \ldots + k + k + 1 = \frac{k(k + 1)}{2} + \frac{2 \cdot (k + 1)}{2} \]
by Inductive Hypothesis
\[= \frac{(k + 1)(k + 2)}{2} \]

Ex 2: \(p(n) \): number of subsets of an \(n \) element set = \(2^n \) for \(n > 0 \)

- \(P(0) : 1 = 2^0 \) = number of subsets of \(\emptyset \)
- \(P(1) : 2 = 2^1 \) = number of subsets of a 1 element set

Inductive step: Assume \(P(k) \) for a fixed but arbitrary value of \(k \)

Claim: \(P(k + 1) \) is true. Let \(X \) be a set with \(k + 1 \) elements. Let \(y \in X \)

How many subsets of \(X \) contain \(y \)?
\(y \) plus any subset of \(X \setminus \{y\} \)
By our I.H., there are \(2^k \) subsets of \(X \setminus \{y\} \) so there are still \(2^n \) when we add \(y \)

How many subsets of \(X \) do no contain \(y \)?
Any subset of \(X \setminus \{y\} \)
By our I.H., there are \(2^k \) subsets of \(X \setminus y \)
Total number of subsets = $2^k + 2^k = 2^{k+1}$

As an example, consider a 2 element set $\{1, 2\}$ and its power set, $\{\{1, 2\}, \{1\}, \{2\}, \emptyset\}$. To go from $p(2)$ to $p(3)$, we consider the added element 3 and separate the possible subsets into two sets: ones that include 3 and ones that don’t.

The first set: $\{\{1, 2, 3\}, \{1, 3\}, \{2, 3\}, \{3\}\}$

The second set: $\{\{1, 2\}, \{1\}, \{2\}, \emptyset\}$

Note that each set is the same size! Together, they account for all of the possible subsets of $\{1, 2, 3\}$, of which there are $2^2 + 2^2 = 2^3$.

Ex 3: $A \cap (B_1 \cup B_2 \cdots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cdots \cup (A \cap B_n)$

Here, the induction step is easier, but the base case is where you have to do the set element method!