Asymptotic Analysis

Definition: A function f is $O(g)$ if $\exists c, x_0 \geq 0$ such that

$$\forall x \geq x_0, \quad |f(x)| \leq c \cdot |g(x)|$$

This captures the idea that beyond a certain value, x_0, the function g will provide an upper bound for f.

$O(g)$ is the set of all functions f such that f is $O(g)$. Formally, $f \in O(g)$; however, this idea is often denoted “$f = O(g)$”.

Example: $f(x) = x^2 + 4x + 15$

If $x > 1$ then $x < x^2$. ⇒

If $x > 1$ then $x^2 + 4x + 15 < x^2 + 4x^2 + 15x^2 = 20x^2$ ⇒

f is $O(x^2)$

Setting $x_0 = 1$ and $c = 20$, we see that f is $O(x^2)$. Note that these constants are not unique. We can also go the other direction and say that x^2 is $O(f(x))$.

Definition: A function f is $O(g)$ iff g is $\Omega(f)$. This provides g as a lower bound for our function f.

Definition: A function f is $\Theta(g)$ iff f is $O(g)$ and f is $\Omega(g)$.

Note: this is often what people mean when they say that f is $O(g)$. Be cognizant of the distinction between these two terms!

Example: $f(x) = x^2 + 4x + 15$

There are infinitely many upper bounds on f; for example, we have already shown that f is $O(x^2)$, but f is also $O(x^3)$, and $O(x^{100})$, etc.

However, we can differentiate between these bounds by looking at Θ. f is $\Theta(x^2)$, but f is not $\Theta(x^3)$.

Example: x^2 is not $O(x)$.

Let’s prove this by contradiction. Suppose $x^2 \in O(x)$. Then $\exists x_0, c$ such that $x^2 \leq c \cdot x \Rightarrow x \leq c \forall x > x_0$. This is a contradiction because c is a constant, so $x^2 \not\in O(x)$.

Example: $f(n) = 1 + 2 + ... + n = \frac{n(n+1)}{2} = \binom{n+1}{2}$

Claim: $f(n)$ is $O(n^2)$.

Proof. $1 + 2 + 3 + ... + n \leq n + n + n + ... + n = n^2$. Setting $c = 1, x_0 = 1$ we have that f is $O(n)$.
Claim: $f(n)$ is $\Omega(n^2)$.

Proof. $1 + 2 + 3 + \ldots + n \geq \lceil \frac{n}{2} \rceil + (\lceil \frac{n}{2} \rceil + 1) + (\lceil \frac{n}{2} \rceil + 2) + \ldots + n > \lceil \frac{n}{2} \rceil \cdot \lceil \frac{n}{2} \rceil \geq \frac{n}{2} \cdot \frac{n}{2} = \frac{n^2}{4}$. Thus, n^2 acts as a lower bound for f and we have that f is $\Omega(n)$.

Claim: $f(n)$ is $\Theta(n^2)$.

Proof. As shown above, f is $O(n^2)$ and f is $\Omega(n^2)$. Therefore f is $\Theta(n^2)$.

Notice that in general, for a binomial coefficient of the form $\binom{n}{k}$, its growth rate will be n^k.