Definition: A relation R on the sets A and B is a subset of the Cartesian product $A \times B$. A relation R on the set A is a subset of the Cartesian product $A \times A$. Notationally, if an ordered pair (a, b) is in the relation R, we can write $(a, b) \in R$ or aRb.

Definition: A relation R on A is reflexive if $\forall a \in A, (a, a) \in R$.

Definition: A relation R on A is symmetric if $\forall a, b \in A$, we have that $(a, b) \in R \Rightarrow (b, a) \in R$.

Definition: A relation R on A is transitive if $\forall a, b, c \in A$, we have that $((a, b) \in R$ AND $(b, c) \in R) \Rightarrow (a, c) \in R$.

Definition: An equivalence relation is a relation that is reflexive, symmetric, and transitive.

Definition: A partition of a set A is a collection of subsets B_1, \ldots, B_k of A s.t. every element of A is in some subset B_i, and $B_i \cap B_j = \emptyset \ \forall i, j$. We say that such a collection of blocks B_1, \ldots, B_k partitions A.

Definition: Let R be an equivalence relation on A. Then the equivalence class of $a \in A$, denoted $[a]_R$, is $\{x \mid x \in A, (x, a) \in R\}$.

Proposition: Given a partition B_1, \ldots, B_k on a set A, the blocks B_i are the equivalence classes of some equivalence relation on A.

Proposition: The equivalence classes of a relation R on A form a partition of A.