Multiplicative Inverse, Fermat’s little Theorem

Michael L. Littman

CS 22 2020

February 21, 2020
Overview

Arithmetic with a Prime Modulus (8.6)
Multiplicative Inverses (8.6.1)
Cancellation (8.6.2)
Fermat’s Little Theorem (8.6.3)
Back to basics

Definition: The *multiplicative inverse* of a number x is a number x^{-1} such that: $x \cdot x^{-1} = 1$.

Division by x is really multiplication by x^{-1}.

Over the reals, what values have inverses? Everybody but zero.

Over the integers, what values have inverses? Only 1 and -1.

Over the integers mod n, what values have inverses?
Example, mod 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

What specific values have inverses? 1, 3, 7, 9.

What specific values do not have inverses? 0, 2, 4, 5, 6, 8.

General rule? \(a \) has an inverse iff \(\gcd(a, n) = 1 \) or \(n \).
Inverse mod prime

If this rule holds, all values (except zero!) have inverses mod a prime.

Lemma: If p is prime and k is not a multiple of p, then k has a multiplicative inverse modulo p.

Proof: Since p is prime and k is not a multiple of p, $\gcd(p, k) = 1$. Therefore, there are s and t such that $1 = sp + tk$. So, mod p, that’s $1 = tk$, or $t = k^{-1}$ mod p. QED.

Example: What’s the multiplicative inverse of 3 (mod 11)?

$\gcd\text{combo}(3, 11) = (4, -1, 1)$

So? 4 works. Because $1 = 4 \times 3 - 1 \cdot 11$, so, mod 11, that’s $1 = 4 \times 3$.
Back to dividing both sides

Earlier, we saw:

\[7 \equiv 28 \pmod{3} \]
\[1 \equiv 4 \pmod{3} \] divide by 7

 Doesn’t actually work, in general:

\[12 \equiv 6 \pmod{3} \]
\[4 \not\equiv 2 \pmod{3} \] divide by 3

Why? Because we’re really talking about multiplying both sides by \(0^{-1} \), which doesn’t exist.

Apart from dividing by 0, we can cancel.
Cancellation proof

If we have

\[ak \equiv bk \pmod{p} \]

and \(p \) is prime and \(k \not\equiv 0 \pmod{p} \), then \(k^{-1} \pmod{p} \) exists. Multiply both sides by \(k^{-1} \) and congruence is maintained.
Never need to multiply big numbers

When doing multiplication mod n, we can always mod n the numbers first.

Example:

$7415 \times 2993 \mod 3$

$= 22193095 \mod 3$

$= 1$

OR:

$(7415 \mod 3) \times (2993 \mod 3) \mod 3$

$(2 \times 2) \mod 3$

$= 1$.
Proof

\[ab \mod n = (a \mod n)(b \mod n) \mod n. \]

\[
\begin{align*}
 a &= q_1 n + r_1 \\
 b &= q_2 n + r_2 \\
 ab &= (q_1 n + r_1)(q_2 n + r_2) \\
 ab &= (q_1 q_2 n + q_1 r_2 + q_2 r_1)n + r_1 r_2
\end{align*}
\]
Solving an old equation

In an early lecture, we wanted to know if there’s an n such that $n^2 \equiv 8 \pmod{10}$.

We don’t quite have the ability to take square roots to solve this equation. But, we now know that if it’s not true of n from 0 to 9, it’s not true for any n. Why? Because you can take mod before multiplying.

Note also: Connor Jordan proved that the sequence of quadratic residuals (mods of squares n) will always be a length n palindrome!

$x^2 \equiv (n - x)^2 \pmod{n}$

iff $x^2 \equiv n^2 - 2nx + x^2 \pmod{n}$

iff $x^2 \equiv x^2 \pmod{n}$.
Permuting

Corollary: Suppose p is prime and k is not a multiple of p. Then, the sequence of remainders on division by p of the sequence:

$$1 \cdot k, 2 \cdot k, \ldots, (p - 1) \cdot k$$

is a permutation of the sequence:

$$1, 2, \ldots, (p - 1).$$

Example, $k = 3$, $p = 11$:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\times k$</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>mod p</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
Permutation proof

Proof: The sequence of remainders contains \(p - 1 \) numbers. Since \(i \times k \) is not divisible by \(p \) (neither contains a factor of \(p \)) for \(i = 1, \ldots, p - 1 \), all these remainders are in \([1, p)\) by the definition of remainder. Furthermore, the remainders are all different. That’s because no two numbers in \([1, p)\) are congruent modulo \(p \). By the Cancellation property, \(i \cdot k \equiv j \cdot k \pmod{p} \) iff \(i \equiv j \pmod{p} \). Thus, the sequence of remainders must be a permutation of the numbers from 1 to \(p - 1 \). QED.

It’s a magic shuffle function. Useful for randomization and sending secret messages!
Fermat’s little theorem

Theorem: Suppose p is prime and k is not a multiple of p. Then:

$$k^{p-1} \equiv 1 \pmod{p}.$$

\[(p - 1)! \]
\[= 1 \cdot 2 \cdots (p - 1) \]
\[= \text{rem}(k, p) \cdot \text{rem}(2k, p) \cdots \text{rem}((p - 1)k, p) \]
\[\equiv k \cdot 2k \cdots (p - 1)k \pmod{p} \]
\[\equiv (p - 1)! k^{p-1} \pmod{p} \]

Note that $(p - 1)!$ is not a multiple of p because none of $1, 2, \ldots, (p - 1)$ contain a factor of p. So, by the Cancellation lemma, we can cancel $(p - 1)!$ from the top and bottom, proving the claim. QED
Inverses from Fermat’s little theorem

Since \(k^{p-1} \equiv 1 \pmod{p} \) and \(k^{p-1} = k \cdot k^{p-2} \), that tells us that \(k^{p-2} \) is the multiplicative inverse for \(k \).

We can compute \(k^{p-2} \pmod{p} \) efficiently using a technique called exponentiation by repeated squaring.

Running time is 2 log \(p \), just like “gcdcombo”.
Exponentiation by Repeated Squaring Idea

Can always compute a^k by $k - 1$ multiplications of a.

If k is even, can compute it with $k/2 - 1$ multiplications of a to get $a^{k/2}$. Then, $a^k = (a^{k/2})^2$. So, one more multiplication and we’re there.

If k is odd, similar trick to get $a^{(k-1)/2}$, then square, then multiply one more a.

Repeating this idea, the number of multiplications is on the order of $2 \log k$.
Exponentiation by Repeated Squaring

```python
def repsq(a, k):
    if k == 0: return(1)
    if k % 2 == 0:
        sqroot = repsq(a, k/2)
        return(sqroot*sqroot)
    sqrootdiva = repsq(a, (k-1)/2)
    return(sqrootdiva*sqrootdiva*a)
```
Exponentiation by Repeated Squaring Mod Style

```python
def repsqmodn(a, k, n):
    if k == 0: return(1)
    if k % 2 == 0:
        sqroot = repsqmodn(a, k/2, n)
        return((sqroot*sqroot) % n)
    sqrootdiva = repsqmodn(a, (k-1)/2, n)
    return((sqrootdiva*sqrootdiva*a) % n)
```