Overview

Sets Definitions (4.1–4.1.1)

Sets Operations (4.1.2–4.1.5)

Equality Proofs (4.1.6)

Venn Diagrams
Set Definition

Definition (informal): A set is a bunch/collection/group of objects.

Definition: The *elements* of the set are the objects contained in that set.

Sets can contain numbers, ordered sequences of numbers, strings, names, or other sets.

Objects are either *in* the set or *not in* the set. We don’t have a concept of an object being in a set multiple times. It’s a Boolean property.

We write curly braces around a comma-separated list to build a set.

Examples:

- \(H = \{ \text{Julie, Tyler, Julia} \} \)
- \(D = \{ \text{Boston Kreme, Glazed, Apple Crumb, Pumpkin} \} \)
- \(\mathbb{N} = \{ 0, 1, 2, 3, 4, \ldots \} \)
- \(S = \{ \text{Brown, Columbia, Cornell, \ldots, Yale} \} \)
Elements

- $H = \{ \text{Julie, Tyler, Julia} \}$
- $D = \{ \text{Boston Kreme, Glazed, Apple Crumb, Pumpkin} \}$
- $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots \}$
- $S = \{ \text{Brown, Columbia, Cornell, \ldots, Yale} \}$

Definition: We say say $x \in S$ if x is an element of or in or a member of the set S.

- Julie $\in H$? Yes.
- Columbia $\notin H$.
- Columbia $\in S$? Yes.
- Dartmouth $\in S$? Yes.
Some Sets of Numbers

- $\emptyset = \{\} \text{ (empty set, null set)}$
- $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\} \text{ (non-negative integers)}$
- $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \text{ (integers)}$
- $\mathbb{Q} = \{1/2, -4/15, 21, \ldots\} \text{ (rationals)}$
- $\mathbb{R} = \{\sqrt{2}, -\pi, 21, \ldots\} \text{ (real numbers)}$
- $\mathbb{C} = \{i/2, 15 - i, \sqrt{7}, 21, \ldots\} \text{ (complex numbers)}$

Superscript plus limits to positive values: $\mathbb{Z}^+ = \mathbb{N}^+$.

Superscript minus limits to negative values: $21 \notin \mathbb{R}^-$.
Sets of sets

- \(A = \{1, 4, 9\} \)
- \(B = \{\{1, \{4\}\}, \{9\}\} \)

- \(1 \in A? \) Yes.
- \(1 \in B? \) No, but \(\{1, \{4\}\} \in B \).
- \(\exists x \in B, 1 \in x? \) Yes, \(x = \{1, \{4\}\} \in B \) and \(1 \in x \).
Subsets

Definition: One set is a *subset* of another if every element of the first set is also an element of the second.

We write $S \subseteq T$ to say the set S is a subset of set T. So, $S \subseteq T$ means $\forall x \in S, x \in T$.

Examples:

- $\mathbb{N} \subseteq \mathbb{Z}$? Yes, every positive integer is also a non-negative integer.
- $\mathbb{Z}^+ \subseteq \mathbb{N}$? Yes, every positive integer is also a non-negative integer.
- $\mathbb{C} \subseteq \mathbb{Z}$? No, $\mathbb{C} \not\subseteq \mathbb{Z}$. Some (many!) complex numbers are not integers. Although, $\mathbb{Z} \subseteq \mathbb{C}$.
- $\mathbb{N} \subseteq \mathbb{N}$. Yes, if sets are equal, all of the first must also be in the second!

Note: $\{1, 2, 3\} \subseteq \{1, 2, 3, 4\}$ looks a little bit like $3 \leq 4$.

We write $A \subset B$ to rule out equality (like $a < b$).
Non-Trichotomy

If a and b are integers, exactly one of these properties must hold:

- $a < b$
- $a = b$
- $a > b$

Not so for subsets. Example?

$A = \{0\}$
$B = \{1\}$

$A \subset B$? No, $0 \in A$, but $0 \notin B$.

$A = B$? No, they are different sets.

$A \supset B$? (superset!) No, $1 \in B$, but $1 \notin A$.

Operations on sets: Union

- \(A = \{j, u, l, i, a\} \)
- \(B = \{j, u, l, i, e\} \)
- \(C = \{t, y, l, e, r\} \)

Definition: The *union* of sets \(X \) and \(Y \), \(X \cup Y \), consists of every element that is in either \(X \) or \(Y \). In other words, \(z \in X \cup Y \) means \(z \in X \) or \(z \in Y \).

Example: \(A \cup B = \{j, u, l, i, e, a\} \).
Operations on sets: Intersection

- $A = \{j, u, l, i, a\}$
- $B = \{j, u, l, i, e\}$
- $C = \{t, y, l, e, r\}$

Definition: The intersection of sets X and Y, $X \cap Y$, consists of every element that is in both X and Y. In other words, $z \in X \cap Y$ means $z \in X$ and $z \in Y$.

Example: $B \cap C = \{l, e\}$.
Operations on sets: Set difference

- $A = \{j, u, l, i, a\}$
- $B = \{j, u, l, i, e\}$
- $C = \{t, y, l, e, r\}$

Definition: The set difference of sets X and Y, $X - Y$, consists of every element that is in X but not in Y. In other words, $z \in X - Y$ means $z \in X$ and $z \notin Y$.

Example: $C - A = \{t, y, e, r\}$.

Example: $A - B = \{a\}$.
Operations on sets: Symmetric difference

- $A = \{j, u, l, i, a\}$
- $B = \{j, u, l, i, e\}$
- $C = \{t, y, l, e, r\}$

Definition: The symmetric difference of sets X and Y, $X \triangle Y$, consists of every element that is in X but not in Y or in Y but not X. In other words, $z \in X \triangle Y$ means $z \in X$ and $z \not\in Y$ or $z \in Y$ and $z \not\in X$.

Example: $C \triangle A = \{t, y, e, r, j, u, i, a\}$.

Example: $A \triangle B = \{a, e\}$.
Operations on sets: Complement

- $A = \{j, u, l, i, a\}$
- $B = \{j, u, l, i, e\}$
- $C = \{t, y, l, e, r\}$

Definition: The complement of a set X, \overline{X}, is defined with respect to some universe of possible elements U. It consists of every possible element that is not X. In other words, $\overline{X} := U - X$.

Example: If U is the universe of all letters in English, $\overline{A} = \{b, c, d, e, f, g, h, k, m, n, o, p, q, r, s, t, v, w, x, y, z\}$.

Example: If $U = \mathbb{Z}$, $\mathbb{Z}^- = \mathbb{Z}^+ - \{0\}$.
Disjoint sets

Definition: Sets A and B are *disjoint* is they have no elements in common. In other words,

$$A \cap B = \emptyset \text{ or } A \subseteq \overline{B}.$$
Operations on sets: Power set

- $A = \{j, u, l, i, a\}$
- $B = \{j, u, l, i, e\}$
- $C = \{t, y, l, e, r\}$

Definition: The **power set** of a set X, $\mathcal{P}(X)$, is the set of all subsets of X. In other words, $\forall x \in \mathcal{P}(X), x \subseteq X$ and $\forall x \subseteq X, x \in \mathcal{P}(X)$.

Example: If $D = B \cap C = \{l, e\}$, $\mathcal{P}(D) = \{\emptyset, \{l\}, \{e\}, \{l, e\}\}$.

Example: If $E = A \cap B - C = \{j, u, i\}$, $\mathcal{P}(E) = \{\emptyset, \{j\}, \{u\}, \{i\}, \{j, u\}, \{j, i\}, \{u, i\}, \{j, u, i\}\}$.

Example: $\mathcal{P}(\emptyset) = \{\emptyset\}$.
Operations on sets: Cardinality

- ▶ $A = \{j, u, l, i, a\}$
- ▶ $B = \{j, u, l, i, e\}$
- ▶ $C = \{t, y, l, e, r\}$

Definition: The *cardinality* of a set X, $|X|$, is the count of the number of unique elements in X.

Example: $|A| = |B| = |C| = 5$.

Example: $|\emptyset| = 0$.

Example: If $|A| = n$, $|\mathcal{P}(A)| = 2^n$. Each subset consists of a decision of whether to include or not include (2 possibilities) each of the n elements of A.
Building sets with predicates

General form: \(\{ \text{description of a set} \mid \text{filter on the set} \} \).

Examples:

- \(A ::= \{ n \in \mathbb{N} \mid n = 2k + 1 \text{ for some integer } k \} \)
- \(B ::= \{ x \in \mathbb{R} \mid x^2 > 1 \} \)

Note: Python has a notation for this idea.
Proving set equalities: Logic

$A = B$ means that, for all x, $x \in A$ if and only if $x \in B$. We can use this definition to prove various set equalities. Here’s a useful one.

Theorem: $A = B$ if and only if (iff) both $A \subseteq B$ and $B \subseteq A$.

$A = B$

iff for all x, $x \in A$ if and only if $x \in B$

iff for all x, if $x \in A$ then $x \in B$ and for all x, if $x \in B$ then $x \in A$

iff $\forall x \in A, x \in B$ and $\forall x \in B, x \in A$

iff $A \subseteq B$ and $B \subseteq A$.
Proving set equalities: set-element method

We can use the previous result to prove other set equalities.

Theorem: For any sets \(A \) and \(B \) of elements in universe \(U \),
\[
A \cap B = \overline{A} \cup \overline{B}.
\]

“DeMorgan’s Law” relates intersection and union (“and” and “or”).

An object \(x \in A \cap B \) if it is \textit{not} in both \(A \) and \(B \). Such an element must either not be in \(A \) or not be in \(B \). It follows that such an element must be in \(\overline{A} \cup \overline{B} \). Thus, we have \(A \cap B \subseteq \overline{A} \cup \overline{B} \).

Note also that an object \(x \in \overline{A} \cup \overline{B} \) if it is either not in \(A \) or it is not in \(B \). Such an element can’t be in both \(A \) and \(B \), therefore. Said another way, it must be in \(\overline{A} \cap \overline{B} \). Thus, we have \(\overline{A} \cup \overline{B} \subseteq \overline{A} \cap \overline{B} \).

Since both \(\overline{A} \cap \overline{B} \subseteq \overline{A} \cup \overline{B} \) and \(\overline{A} \cup \overline{B} \subseteq \overline{A} \cap \overline{B} \) are true, we know \(A \cap B = \overline{A} \cup \overline{B} \).
Venn diagram translation

\[(C - A) \cup B \]
\[(C - A - B) \cup (C \cap B - A) \cup (A \cap B \cap C) \cup (A \cap B - C) \cup (B - A - C) \]