A Cost Model

For Scheme

<table>
<thead>
<tr>
<th>Expression</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier/variable</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Math</td>
<td></td>
<td></td>
</tr>
<tr>
<td>any number*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(+ E₁ E₂)</td>
<td>time(E₁) + time(E₂) + 1</td>
<td>space(E₁) + space(E₂)</td>
</tr>
<tr>
<td></td>
<td>* assumes fixed size numbers</td>
<td>+ very generous bound; can you improve it?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props</td>
<td></td>
<td></td>
</tr>
<tr>
<td>any boolean</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(if E₁ E₂ E₃)</td>
<td>time(E₁) + 1 + {time(E₂) if true, (\min) (space(E₁), (\frac{\text{space(E₂)}}{\text{time(E₂)}}))} (\frac{\text{space(E₃)}}{\text{time(E₃)}}) if false</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>empty</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(cons E₁ E₂)</td>
<td>time(E₁) + time(E₂) + 1</td>
<td>space(E₁) + space(E₂) + 3</td>
</tr>
<tr>
<td>(empty? E)</td>
<td>time(E) + 1</td>
<td>space(E)</td>
</tr>
<tr>
<td>(first E)</td>
<td>time(E) + 1</td>
<td>space(E)</td>
</tr>
<tr>
<td>(rest E)</td>
<td>time(E) + 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(make S E₁ ... Eₙ)</td>
<td>time(E₁) + ... + time(Eₙ) + 1</td>
<td>(n+1+n\cdot \min) (space(E₁), ... , space(Eₙ))</td>
</tr>
<tr>
<td>(S? E)</td>
<td>time(E) + 1</td>
<td>space(E)</td>
</tr>
<tr>
<td>(S = E)</td>
<td>time(E) + 1</td>
<td>space(E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F E₁ ... Eₙ)</td>
<td>time(E₁) + ... + time(Eₙ) + 1</td>
<td>n \cdot \min) (space(E₁), ... , space(Eₙ)) + time ((\text{body}(F))) + space ((\text{body}(F)))</td>
</tr>
</tbody>
</table>

Where \(\text{body}(F)\) is the body of the function, evaluated after binding formal to actual parameters.
Notes on "A Cost Model for Scheme"

- We have passed lightly over numbers. In most languages, numbers are
 fixed-width. Scheme numbers are more like lists in that they can be
 arbitrarily large, bounded only by the computer's memory. A further
 subtlety with numbers—especially relevant when their size is not fixed—
 is that the value of a number can be exponentially larger than its size.

- The bounds provided assume a particular implementation (corresponding to
 that of DrScheme). Other implementations of particular operators would
 yield different bounds. For instance, it is possible to make first and
 rest expensive to obtain a cheap appeal (as we will see later this semester).

- We have ignored the n-ary generalizations of operations like +, but their
 cost can be thought of as the natural generalization of the binary
 operation over a list (of arguments).

- We typically use + for time and max for space. This represents a sequential
 world-view. In a parallel system, we sometimes use max for time (i.e., the time
 of the longest-running parallel computation) and + for space (i.e., the space necessary
 when all the parallel computations are executing). Even in a parallel setting, however,
 we still find ourselves adding time but not space because space is a
 renewable resource (once no longer necessary for one purpose it can be used
 for another) but time is not (once used, we cannot reclaim it).

- It is critical to understand that call-by-value languages, such as Scheme and Java,
 do not copy complex values on parameter and function calls or identifier lookup.
Example: Define \(\text{append} \)

\[
(\text{define \text{append} \ l_1 \ l_2}) \]

\[
(\text{if \ (empty? \ l_1)} \]
\[
\ l_2 \]
\[
(\text{cons \ (first \ l_1)} \]
\[
(\text{append \ (rest \ l_1) \ l_2))) \]
\]

Given arbitrary lists \(l_1 \) and \(l_2 \):

\[
\text{time} \ [\text{append} \ l_1 \ l_2] = \text{time} \ [\text{(empty? \ l_1)}] + 1 + \begin{cases} \text{time} \ [\ l_2 \] & \text{if \ true} \\
\text{time} \ [(\text{cons} ...) \] & \text{if \ false} \end{cases} \]

\[
= 2 + 1 + \text{time} \ [(\text{cons} \ \text{(first} l_1) \]
\[
(\text{append \ (rest } l_1) \ l_2))] \]
\]

\[
= 3 + \text{time} \ [(\text{first} \ l_1)] + \text{time} \ [(\text{append} \ (\text{rest} \ l_1) \ l_2)] + 1 \]

\[
= 3 + 2 + \text{time} \ [(\text{append} \ (\text{rest} \ l_1) \ l_2)] + 1 \]
\[
= 6 + \text{time} \ [(\text{append} \ (\text{rest} \ l_1) \ l_2)] \]
\]

That is, given \(l_1 \) and \(l_2 \), we obtain a recursive call on \(\text{(rest} \ l_1) \) and \(l_2 \) after \(6 \) time units.

Since the time \((6 \) units) is independent of the actual values in the list, we can focus on just the length of \(l_1 \). What happens when it's empty? (we assumed not, earlier)

\[
\text{time} \ [(\text{append} \ \text{empty} \ l_2)] \]
\[
= \text{time} \ [(\text{empty} \ l_1)] + 1 + \text{time} \ [l_2] \]
\]

Thus, the time taken by \text{append} is independent of the second argument.

Let \(T(k) \) be the time consumed by \(\text{append} \ l_1 \ l_2 \) where \(l_1 \) is of size \(k \).

We then have:

\[
T(0) = 4 \]
\[
T(k) = 6 + T(k-1) \quad \text{for} \ k > 0 \]
\[
\Rightarrow T(k) = 6k + 4 \quad \text{for all} \ k \geq 0 \]
\]

or, \(T(k) \sim k \), i.e., \text{append} takes time linear in the length of its first argument.
Example: \(\text{Max} \) (without helper)

\[
\text{(define (max l)}
\]
\[
\text{(if (empty? (rest l)}
\]
\[
\text{(first l)}
\]
\[
\text{(if (> (first l) (max (rest l)))}
\]
\[
\text{(first l)}
\]
\[
\text{(max (rest l))))}
\]

Given an arbitrary non-empty list \(l \):

\[
\text{time \([\text{max } l]\) = time \([\text{empty? (rest l)}]\) + 1 + \begin{cases} \text{time \([\text{first l}\)] if true} \\ \text{time \([\text{if} \ldots]\) if false - assume} \end{cases}
\]
\[
= 3 + 1 + \text{time \([\text{if (> (first l) (max (rest l)))}\]}
\]
\[
\text{(first l)}
\]
\[
\text{(max (rest l)))}\]
\[
= 4 + \text{time \([\text{if (> (first l) (max (rest l)))}\]}
\]
\[
+ 1 + \begin{cases} \text{time \([\text{first l}\)] if true} \\ \text{time \([\text{if} \ldots]\) if false} \end{cases}
\]
\[
\text{comparison (first l)}
\]
\[
= 4 + 1 + 2 + \text{time \([\text{max (rest l)}]\]}
\]
\[
+ \text{time \([\text{max (rest l)}]\)]
\]

Clearly the false case dominates the true case. Being pessimistic, let's assume that case.

\[
= 8 + \text{time \([\text{max (rest l)}]\]}
\]
\[
+ \text{time \([\text{max (rest l)}]\)]
\]

By assuming the first element is not the maximum (a strong assumption — in the worst case, it assumes the highest element is the last one in the list), we see that the above relation holds. [N.B. For appeal, we assumed nothing about the actual values in the \(\text{(first l)} \) list. Here we have made a strong assumption!] When the list has only one element, it is easy to see we need some constant \(c \) number of operations.

Let \(T(n) \) be the time consumed by \(\text{max l} \) where \(l \) has \(n \) elements. In the worst case:

\[
T(1) = c, \quad T(n) = 8 + 2 \cdot T(n-1) \text{ for } n > 1
\]

Thus \(T(n) = 8 \cdot 2^n + 16 - c \) or \(T(n) \sim 2^n \).
Example: \textsc{Max} (with helper)

\begin{align*}
\text{(define (max l)} & \quad \text{(define (gt\textsubscript{of} n_1 n_2)} \\
\text{ (if (empty? (rest l)))} & \quad \text{ (if (> n_1 n_2)} \\
\text{\hspace{1cm} (first l))} & \quad \text{\hspace{1cm} n_1} \\
\text{\hspace{1cm} (gt\textsubscript{of} (first l) \quad (max (rest l)))))} & \quad \text{\hspace{1cm} n_2))}
\end{align*}

\begin{enumerate}
\item \textbf{Given an arbitrary non-empty list l:}
\item \textit{time} \left[\text{(max l)} \right] = 3 + 1 + \begin{cases} \text{time} \left[\text{(first l)} \right] & \text{if true} \\
\text{time} \left[\text{(gt\textsubscript{of} \ldots)} \right] & \text{if false - assume}
\end{cases}
= 4 + \text{time} \left[\text{(gt\textsubscript{of} (first l) (max (rest l))}] \right.
\item \textit{Note that (first l) \& (max (rest l)) will both evaluate to numbers;}
\item \textbf{for arbitrary numbers} \(n_1, n_2\):
\item \textit{time} \left[\text{(gt\textsubscript{of} n_1 \ldots _2)} \right] = \text{time} \left[(> n_1 n_2) \right] + 1 + \begin{cases} \text{time[n_1]} & \text{if true} \\
\text{time [\ldots]} & \text{if false}
\end{cases}
= 3 + 1 + \begin{cases} 1 & \text{if true} \\
1 & \text{if false}
\end{cases}
= 5
\item \textbf{Since} \textit{time} \left[\text{(first l)} \right] = \text{time} \left[\text{(rest l)} \right], \text{the time of (max (rest l))}
\item \textbf{clearly dominates in the two arguments; the other is a constant}
\item \textbf{If we take} \(T(n) = \text{the time consumed by (max l)}\) \text{where} \(l\text{ has} n\text{ elements,}
\item \textit{T} (1) = c, \textbf{for some small constant} \(c,\)
\item \(T (n) = 5 + 2 + T(n-1)\)
\item \textbf{Thus} \(T (n) = 7n + c, \text{ for} n \geq 1\)
\item \textbf{or,} \(T(n) \sim n\)
\end{enumerate}

\textbf{Note:} \textit{We did not make any assumptions about the location of the maximum element;}
\item \textit{indeed, the two branches in gt\textsubscript{of} are symmetric in time. Thus, the analysis}
\item \textit{of this version of \textsc{max} is more "robust" : it applies to all inputs.} \textit{Appeared}