
CS17 Integrated Introduction to Computer Science Hughes

CS17 Racket Style Guide
Fall 2019

Contents

1 Introduction 1

2 Naming 1

3 Formatting 1

4 Equality 3

5 Conditionals 4

5.1 Prefer Cond to If . 4

5.2 Concise Conditionals and Results . 6

5.3 To Nest or Not to Nest? . 7

6 Verbosity 7

7 Conclusion 8

1 Introduction

All the Racket code you write in CS 17 must follow all the guidelines in this document.

2 Naming

The designers of Racket snubbed the styles of both the East and West. In Racket, the preferred
style is to use dashes, or hyphens, to name identifiers, as in my-procedure.

In CS17, some good naming conventions are to avoid naming using punctuation (except hypens), start
with a letter, and use only lower-case letters. Some good examples are switcher and my-helper.
Avoid naming identifiers such as fish&chips, bubbleGum, -candy-cane, or Chocolate.Cake.

3 Formatting

Closing Parentheses A line of Racket code should never start with a right parenthesis. You
should only ever use right parentheses in the middle or at the end of a line of Racket code. This
convention makes Racket code more concise without sacrificing readability.

CS17 CS17 Racket Style Guide Fall 2019

These are examples of good Racket style:

(define (f x) (+ 17 (* 18 (/ x 19))))

(define (f x)
(+ 17 (* 18 (/ x 19))))

These are examples of bad Racket style:

(define (f x) (+ 17 (* 18 (/ x 19
))))

(define (f x) (+ 17 (* 18 (/ x 19
)

)
)
)

Note that this convention is different from the stylistic conventions of many other programming
languages, including those you will use later in CS 18.

Square Brackets To make cond expressions easier to read, use square brackets around each
clause. Square brackets more clearly delineate the clauses. Square brackets are particularly useful
when debugging code with many parentheses.

This is okay:

(cond
((> x 0) (sqrt x))
((= x 0) 0)
((< x 0) (make -error "UGHHH!")))

But this is better:

(cond
[(> x 0) (sqrt x)]
[(= x 0) 0]
[(< x 0) (make -error "UGHHH!")])

Line Breaks It can be difficult to read a single line of code with lots of parentheses and nested
clauses. For example, try reading this convoluted line of code:

(cond [(> x 0) (sqrt x)] [(= x 0) 0] [(< x 0) (make -error "BLURGH!")])

To fix this, you should add line breaks like this:

(cond
[(> x 0) (sqrt x)]
[(= x 0) 0]
[(< x 0) (make -error "UGHHH!")])

2

CS17 CS17 Racket Style Guide Fall 2019

Indentation DrRacket indents your code for you, so most of the time you should be all set. But
if your code ever gets mangled, you can always use the Racket | Reindent All menu entry.
Indeed, your code’s indentation should always reflect the running of this command.

Alignment It can happen that procedure names are too long, or that they take too many
arguments, for an entire procedure application to fit on one line. In such cases, there are some
acceptable and some unacceptable alignments.

This is acceptable:

(procedure -that -takes -four -arguments (if (zero? num) 15 16)
"lettuce"
"hippo"
true)

Observe that the first argument is on the same line as the procedure name, and all subsequent
arguments are on a new line, aligned with the first argument.

These are not acceptable:

(procedure -that -takes -four -arguments
(if (zero? num) 15 16) "lettuce" "hippo" true)

(procedure -that -takes -four -arguments (if (zero? num) 15 16)
"lettuce"
"hippo"
true)

But you don’t really have to worry too much about the rules of alignment, because DrRacket will
align your arguments for you automatically.

Spacing Although excess white space does not change the functionality of a program, it can
impact its readability.

Here is an example good Racket style:

(baz (foo bar) qux)

Here are two examples of bad Racket style:

(baz(foo bar)qux)
(baz (foo bar) qux)

This code is less readable, particularly to programmers experienced with LiSP-like programming
languages. By abiding by the community’s convention, you ultimately make things easier for
everyone, yourself included (even if the preferred style goes against your personal aesthetic).

3

CS17 CS17 Racket Style Guide Fall 2019

Predicates By convention, predicate names in Racket end with a question mark; after all, they
are essentially questions. For example, these two predicates are built in to Racket:

1. zero?, which returns true if the input number is zero (and false otherwise)

2. empty?, which returns true if the input list is empty (and false otherwise)

When you define your own predicates, you should follow this same convention. That is, you should
append a question mark to the name of your predicate.

In fact, we have a little secret. The predicate succ? is not built in to Racket. It is only part of CS
17 Racket. But you wouldn’t know that, since we followed the proper naming convention.

4 Equality

Racket has a variety of built-in procedures used to check whether or not two data are equal.

� (= 17 18) or (= true false)

Works on numbers and booleans.

� (string=? "foo""bar")

Works on strings.

� (equal? (list 1 2 3) 15)

Works on everything.

Although equal? can be used in all of the above examples, it’s best to use = or string=?. First
of all, these procedures more precisely specify to the human reader what the code is checking.
But more importantly, these procedures can detect errors in your code. For example, (string=

? 17 "seventeen") will fail, thereby alerting you to the presence of an error in your code. But
(equal? 17 "seventeen") will return false and carry on evaluating your code as if all were well
with the world.

You should use equal? only when writing a polymorphic procedure, such as member?.

When checking equality of compound data, you should write your own equality procedure. For
example:

(define (posn=? posn1 posn2)
(and (= (posn -x posn1) (posn -x posn2))

(= (posn -y posn1) (posn -y posn2))))

(posn=? (make -posn 17 18) (make -posn (+ 15 2) (+ 16 2)))
=> true

(Why does posn=? end with a question mark?)

4

CS17 CS17 Racket Style Guide Fall 2019

5 Conditionals

Many expressions can be expressed in a logically equivalent fashion using either cond or if. But
cond is almost always preferred to if.

5.1 Prefer Cond to If

If you are working with mixed data, you must use cond, and you must follow the structure of the
data definition. For example:

;; (datum list)
;; − empty
;; − (cons datum (datum list))
(cond

[(empty? alod) "The input list is empty"]
[(cons? alod) "The input list is not empty"])

;; shape
;; − circle
;; − triangle
;; − rectangle
(cond

[(circle? shape) "The input is a circle"]
[(triangle? shape) "The input is a triangle"]
[(rectangle? shape) "The input is a rectangle"])

But even when you are not working with mixed data, cond is still preferred, for the simple reason
that cond expressions warn you when your cases are not exhaustive:

(define (foo x)
(cond

[(> x 0) (sqrt x)]
[(= x 0) 0]))

(foo -1)
=> cond: all question results were false

In contrast, if requires you to specify a value in both cases, so you run the risk of possibly supplying
a bogus value, where you really would have liked to signal an error instead. This bogus value will let
your program continue running as if nothing had gone wrong, potentially wreaking havoc somewhere
farther along in its execution, which will only make it that much harder to detect the actual source
of the error.

Furthermore, cond is visually more appealing. All questions are lined up nicely for simultaneous
consideration. This is not the case for if expressions, which are nested for “readability”:

(define (bar x)
(if (> x 0)

(sqrt x)

5

CS17 CS17 Racket Style Guide Fall 2019

(if (= x 0)
0
x)))

(bar -1)
=> -1 ;; bogus value

The only time that if might be preferred to cond is when the data are not mixed and the decision
is binary. For example:

(if (= x 17)
(+ x x)
(* x x))

can be used in place of:

(cond
[(= x 17) (+ x x)]
[(not (= x 17)) (* x x)])

But even here, cond expressions are more easily extensible than if expressions. Suppose we want
to augment our code with a third clause. The logic is immediate within the cond expression:

(cond
[(= x 15) (- x x)]
[(= x 17) (+ x x)]
[(and (not (= x 15)) (not (= x 17))) (* x x)])

The last cond clause could have been else and the logic and functionality would have been the
same, but by adding an else clause, you are telling Racket that it is okay to turn off error-checking.
You are assuming the burden of error-checking yourself! Therefore, we strongly recommend against
using an else case in your cond expressions.

5.2 Concise Conditionals and Results

You should never determine the boolean value of something by doing: (equal? my-boolean true).
Instead, just use my-boolean.

Similarly, do not use a cond or an if expression to first evaluate a predicate, and then return true
or false. For example, (= x 17) evaluates to a boolean and is better style than both of the following
equivalent statements:

(if (= x 17)
true
false)

and

6

CS17 CS17 Racket Style Guide Fall 2019

(cond
[(= x 17) true]
[(not (= x 17)) false])

In the next example, the two possible values of the if expression are nearly identical, so writing
them out twice in full is redundant.

(if (zero? num)
(procedure -that -takes -lots -of -arguments 15 "cats" "lichen" true)
(procedure -that -takes -lots -of -arguments 16 "cats" "lichen" true))

This code can be rewritten more concisely like this:

(procedure -that -takes -lots -of -arguments
(if (zero? num) 15 16)
"cats"
"lichen"
true)

5.3 To Nest or Not to Nest?

Sometimes, you will need to test multiple conditions simultaneously. For example, you may want to
do one thing when two lists are empty, something else when just one is empty, and something else
entirely when neither is empty.

Here are two acceptable ways of structuring combinations of conditionals:

(define (check -empty list1 list2)
(cond

[(and (empty? list1) (empty? list2)) "both lists are empty"]
[(and (empty? list1) (cons? list2)) "list one is empty"]
[(and (cons? list1) (empty? list2)) "list two is empty"]
[(and (cons? list1) (cons? list2)) "both lists are non -empty"]))

(define (check -empty list1 list2)
(cond

[(empty? list1)
(cond

[(empty? list2) "both lists are empty"]
[(cons? list2) "list one is empty"])]

[(cons? list1)
(cond

[(empty? list2) "list two is empty"]
[(cons? list2) "both lists are non -empty"])]))

7

CS17 CS17 Racket Style Guide Fall 2019

Each of these two styles emphasizes a slightly different way of organizing and thinking about the
possible cases. Generally speaking, either is acceptable, but certain problems may lend themselves
towards more readable code using one structure rather than the other.

Just as cond is preferred to if when coding up a single test, cond is again preferred to if when
nesting tests. For example, the following is considered bad style:

(define (check -empty list1 list2)
(cond

[(empty? list1)
(if (empty? list2) "both lists are empty" "list one is empty")]

[(cons? list1)
(if (empty? list2) "list two is empty" "both lists are non -empty")])

)

6 Verbosity

Simplify if expressions There are a number of equivalent ways to express the same conditional
logic. In almost all cases, shorter expressions are preferred:

Verbose Concise

(if expr true false) expr

(if expr expr false) expr

(if expr false true) (not expr)

(if (not expr) x y) (if expr y x)

(if x true y) (or x y)

(if x y false) (and x y)

(if x false y) (and (not x) y)

(if x y true) (or (not x) y)

When an if expression is used for argument selection, it can be embedded within a procedure
application to improve readability, as follows:

;; Duplication of (f a b ..) application
(if c (f a b x) (f a b y))

;; Can be eliminated by embedding the if
(f a b (if c x y))

Don’t rewrap procedures When applying a procedure to another procedure, don’t rewrap the
procedure if it already does what you need it to do. Here are two examples:

8

CS17 CS17 Racket Style Guide Fall 2019

;; VERBOSE
(lambda (x y) (cons x y))

;; CONCISE
cons

;; VERBOSE
(define (select x y) (filter x y))

;; CONCISE
(define select filter)

7 Conclusion

Coding style is, of course, a matter of style, and some circumstances better lend themselves to one
style than to another. Sometimes this distinction is a matter of opinion; if you are ever unclear
about whether there is a preferred style, ask a TA.

And always remember: you are not writing code only for yourself. Code is something you will likely
share with your peers and others. Therefore, it behooves you to follow the language conventions of
whatever language you find yourself programming in. Otherwise, you will confuse not only yourself,
but anyone you share your code with. Happy coding!

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or
any other CS 17 document by filling out the anonymous feedback form: http://cs.brown.edu/
courses/csci0170/feedback.

9

 http://cs.brown.edu/courses/csci0170/feedback
 http://cs.brown.edu/courses/csci0170/feedback

	Introduction
	Naming
	Formatting
	Equality
	Conditionals
	Prefer Cond to If
	Concise Conditionals and Results
	To Nest or Not to Nest?

	Verbosity
	Conclusion

