Section 2 Overview

Agenda

- Inductive Proof
 - Inductive Proof Steps
 - Recurrence Relation
- Dynamic Programming
- Optional Problem
 - Recursive Python
 - Pascal’s Triangle

Inductive Proof

Inductive Proof Steps

Steps of Induction:
1. Problem Statement (kind of optional but nice)
2. Base Case
3. Inductive Hypothesis
4. Inductive Leap of Faith (Inductive Step)
5. Conclusion

Inductive Proof

1 Money

1.1 Problem

Prove that $\sum_{i=1}^{n} [(i) \times (i + 1)] = \frac{(n)(n+1)(n+2)}{3}$ where $n \geq 1$ using a beautiful inductive proof.
1.2 Solution

Base Case:

Let $n = 1$.

\[1 \times 2 = 2 \]
\[\frac{1 \times 2 \times 3}{3} = 2 \]

Inductive Hypothesis:

Assume, for $n = k$, that

\[\sum_{i=1}^{k} [(i) \times (i + 1)] = \frac{(k)(k+1)(k+2)}{3} \]

Inductive Step:

By the Inductive Hypothesis,

\[\sum_{i=1}^{k} [(i) \times (i + 1)] = \frac{(k)(k+1)(k+2)}{3} \]

Add $((k+1) \times (k + 2))$ to both sides of the equation.

\[\sum_{i=1}^{k} [(i) \times (i + 1)] + ((k+1) \times (k + 2)) = \frac{(k)(k+1)(k+2)}{3} + ((k+1) \times (k + 2)) \]

Simplify the left side of the equation.

\[\sum_{i=1}^{k+1} [(i) \times (i + 1)] = \frac{(k+1)(k+2)}{3} + ((k+1) \times (k + 2)) \]

Simplify the right side of the equation.

\[\sum_{i=1}^{k+1} [(i) \times (i + 1)] = \frac{(k+1)(k+2)(k+3)}{3} \]

Thus,

\[\sum_{i=1}^{k+1} [(i) \times (i + 1)] = \frac{(k+1)((k+1)+1)((k+1)+2)}{3} \]

\[\square \]
Recurrence Relation Solution

RECURRANCE

The game of Hanoi Tower is to play with a set of disks of graduated size with holes in their centers and a playing board having three spokes for holding the disks.

The object of the game is to transfer all the disks from spoke A to spoke C by moving one disk at a time without placing a larger disk on top of a smaller one. The minimal number of moves required to solve the problem with n disks can be modeled by the following recurrence relation:

\[a_n = 2a_{n-1} + 1, \ n \geq 1 \]
\[a_1 = 1 \]

Plug and Chug Solution:

\[a_1 = 1 \]
\[a_2 = 2a_1 + 1 = 2^1 + 1 = 3 \]
\[a_3 = 2a_2 + 1 = 2^3 + 1 = 7 \]
\[a_4 = 2a_3 + 1 = 2^7 + 1 = 15 \]
\[a_n = 2a_{n-1} + 1 = 2^n - 1, \ n \geq 1 \]

Dynamic Programming

Convert some amount of money M into a given a list of denominations (decreasing order), using the smallest possible number of coins. Return the smallest number of coins (not the denominations used)

Greedy approach:

Input: An amount of money, and an array (denoms) of d denominations = (c1, c2, ..., cd), in decreasing order (c1>c2>...cd).

Output: Min number of coins to make amt

\text{greedy_change}(amt, \text{denoms}): \text{t}
remainder = amt //remaining amount to make change for
pieces = [] //output array of denominations (number of each denomination)
for k = 0 to denom.length: //for each denomination (starting with largest)
 pieces[k] = remainder/denoms[k]
 remainder = remainder % denoms[k] //practice mod!
return sum(pieces)

Dynamic Approach:
Looks at the minimum of previous choices then adds the denomination needed.

For example, if you were making 77 cents from 1, 3, and 7 cents. 77 cents would depend on:
1. The best combination for 77-1 = 76 cents, plus 1 cent coin
2. The best combination for 77-3 = 74 cents, plus a 3 cent coin
3. The best combination for 77-7 = 70 cents, plus a 7 cent coin

Optional Problems

Sum All
Given a positive integer x, recursively find the sum of all numbers from 1 to x.

```python
def sumAll(x):
    '''Function that recursively sums positive integers less than or equal to x'''
    if x==0:
        return 0
    else:
        return sumAll(x-1)+x
```
Pascal's Triangle
Write an algorithm that takes an integer n and returns the nth row of Pascal’s Triangle (see here for an explanation: https://en.wikipedia.org/wiki/Pascal%27s_triangle)

```python
def pascal(n):
    """
    input: an int, n, the line of pascal's triangle that you want to return
    output: a list representing the nth line of pascal's triangle. If n is less than 2, then the function should return [1]"""
    if n < 2:
        return [1]
    prev_line = pascal(n-1)
    line = [prev_line[i]+prev_line[i+1] for i in range(len(prev_line)-1)]
    line.insert(0,1)
    line.append(1)
    return line
```