Section 1 Overview

Agenda
1. Review Introduction - More than 3 unexcused absence to section = NC, mini-assignments.
2. Analysis of algorithms (Big O)
 a. Movie_night
 b. sumList
3. Big-O Proof
4. Python tips and tricks

Analysis of Algorithms

Movie Night
movie_night(x,y,z):
 for i in range 0 to x: // O(x)
 for j in range 0 to y: //O(y)
 print “LIGHTS CAMERA ACTION” //O(1)
 return 3*z //O(1)
answer: O(x*y)

Sum List
sumList(list): //of length n
 s = 0
 for element in list:
 s += element
 return s
answer: O(n)

Big-O Proof

- Prove that \(f(n) = n^2 + 5n + 7 \) is \(O(n^2) \)
- Solution:

From Slide 44 we have the definition of Big-O:
“If there exist \(c, n_0 \) such that for all \(n \geq n_0 \), \(T_A(n) \leq c \times T_b(n) \) then \(T_A(n) \) is \(O(T_b(n)) \).”

Our problem is now to find \(c, n_0 \) such that for all \(n \geq n_0 \), \(n^2 + 5n + 7 \leq c \times n^2 \)

We can choose our \(n_0 \), so let’s choose 1 (0 wouldn’t work if we plugged it in). Now we have \(n \geq 1 \). Now our goal is to show that for some constants \(c \) the right side will always overtake
To deal with the \(n^2 \) term: pretty simple because by definition \(n^2 \geq n^2 \)

To deal with the \(+ 5n\) term: We have that \(n \geq 1 \), so it follows that \(n^2 \geq n \) (by multiplying both sides by \(n \)). We then expand this to

\[
\begin{align*}
n^2 & \geq n \geq 1 \\
5n^2 & \geq 5n \geq 5 \quad \text{(multiply by 5)}
\end{align*}
\]

Similarly, when dealing with the \(+ 7\) term, we get if \(n \geq 1 \), then

\[
7n^2 \geq 7n \geq 7
\]

Combining the three inequalities from above, we get:

\[
\begin{align*}
n^2 + 5n + 7 & \leq n^2 + 5n^2 + 7n^2, \quad \text{and then simplifying we get} \\
n^2 + 5n + 7 & \leq 13n^2 \implies \text{so } c = 13 \quad \text{and } n = 1 \quad \text{and we have shown that } f(n) \text{ is } O(n^2)!
\end{align*}
\]

They can plug in some values for \(n \) to prove the point.

\[
\begin{align*}
n = 1: f(1) & = 1^2 + 5 \times 1 + 7 = 13 \leq 13 \times 1^2 = 13 \\
n = 2: f(2) & = 2^2 + 5 \times 2 + 7 = 21 \leq 13 \times 2^2 = 52 \\
n = 11: f(11) & = 11^2 + 5 \times 11 + 7 = 183 \leq 13 \times 11^2 = 1573
\end{align*}
\]

Python Tips and Tricks (yay):

- Consider typing some stuff into python in your terminal and projecting that if possible!!
- Initializing lists:
 - Empty list of length 0:
 - \(L = \left[\right] \)
 - List with some elements:
 - \(L = \left[1, 2, 3, \text{"snuggie"}\right] \) or \(L = \left[4\right] \)
 - List of a certain initial size:
 - \(L = \left[0\right] \times 100 \) (List of 100 0’s)
- List slicing:
 - \(L[1:5] \)
 - Elements 1 through 5, (inclusive of 1, exclusive of 5)g
- Indexing the last element of a list:
 - \(L[-1] \)
- Reverse a list:
 - \(L[:::-1] \)
- Enumerate: for \(i, \text{element} \) in enumerate(\(L \)):
 -
 - ex.:
L = [3, 4, 5]
for i, number in enumerate(L):
 i = 0, number = 3 # first iteration
 i = 1, number = 4 # second iteration
 i = 2, number = 5 # third iteration
 # end loop

Iterating through items in sequence: loop variable type self-defines
 ○ for book in library (library is defined, creates loop variable book that is whatever class library is full of)
 ○ For i in range(x)

Stress importance of indentation in python

Assert statements for testing.
 ○ assert func(x) == <expected value>, “String printed if condition isn’t met”

Bonus Python Problem

def get_odds(nums):
 """Given a list of positive ints, returns another list of any of the odd values in the given list
 Input: list of positive ints
 Output: list of ints, only odd values"
 odds = []
 for n in nums:
 if n % 2 != 0:
 odds.append(n)
 return odds